1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leto [7]
3 years ago
14

2 points

Mathematics
1 answer:
miskamm [114]3 years ago
5 0

The x - intercept of 5x - 3y = 15 is (3, 0)

The y -intercept of 5x - 3y = 15 is (0, -5)

<h3><u>Solution:</u></h3>

Given equation is 5x - 3y = 15

<em><u>To find: x - intercept and y -intercept</u></em>

The x intercept is the point where the line crosses the x axis. At this point y = 0

The y intercept is the point where the line crosses the y axis. At this point x = 0.

<em><u>Finding x - intercept:</u></em>

To find the x intercept using the equation of the line, plug in 0 for the y variable and solve for x

So put y = 0 in given equation

5x - 3(0) = 15

5x = 15

x = 3

So the x - intercept is (3, 0)

<em><u>Finding y - intercept:</u></em>

To find the y intercept using the equation of the line, plug in 0 for the x variable and solve for y

So put x = 0 in given equation

5(0) - 3y = 15

-3y = 15

y = -5

So the y - intercept is (0, -5)

You might be interested in
Please help me with number six
Tpy6a [65]

w = 2x = 2( \frac{y}{3}) \\ v = 2w = 2 \times 2( \frac{y}{3} ) \\ v + w  + x + y = 180 \\  \frac{4}{3} y +  \frac{2}{3} y +  \frac{y}{3}  + y = 180 \\ y( \frac{4}{3}  +  \frac{2}{3}  +  \frac{1}{3}  + 1) = 180 \\ y =  \frac{180}{()}
5 0
3 years ago
I need help solving this equation<br> 4n-9=2(5+2n)
Nastasia [14]

First, use distributive property on the right half.

2 * 5 = 10

2 * 2n = 4n

4n - 9 = 10 + 4n

Add 9 to both sides

4n = 19 + 4n

Subtract 4n from both sides

0 = 19

But thats not true. Therefore, there is no solution.

4 0
3 years ago
Hi please help , With solution if it's ok
Snowcat [4.5K]

<u>Answers </u><u>with </u><u>Method</u><u>:-</u>

1) Multiply the length value by 100,000.

2.5 \: hm = 2.5 \times 100000

=  >2.5 \: hm = 250000 \: mm

2) For this, divide the length value by 1000.

=  >  \frac{1800}{1000}

=  > 1.8 \: dam

3) For finding the approximate value, just multiply the value of length by 1.609.

=  >6450 \: m = (6450 \times 1.609) \: km

=  > 10380.27 \: km

4) Multiply the given mass value by 100.

=  > 1.2 \: kg = 1.2 \times 100

=  > 1200 \: g

5) Multiply the given value by 10,000.

4.37 \: dag = 4.37 \times 10000

=  > 43700 \: mg

5 0
2 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Which ones are NOT a function? 20 POINTS!!!!
sladkih [1.3K]

12 and 14 are not functions cause they fail the horizontal line test!

7 0
3 years ago
Other questions:
  • Which equation represents the sentence?
    6·1 answer
  • A new community sports complex is being built in Erie. The perimeter of the rectangular field is 526 yards. The length of the re
    11·1 answer
  • The charge for a rental car is $20 plus $0.05 per mile.
    15·1 answer
  • Inez waters her plants every two days. She trims them every 15 days. She did both today. When will she do them both again?
    10·1 answer
  • How do you do the algebraic equation 81+m=90
    11·2 answers
  • If a 45 45 90 triangle has the hypothenuse of 10 what would the legs x and y be
    6·1 answer
  • What is the equation of the line that passes through the point (- 4, 1) and has slope of - 3/4 ?
    13·1 answer
  • Jade is thinking of a number. 3/4 of 200 is the same as 1/8 of her number. What number is she thinking of?
    10·2 answers
  • I rlly need help with thins question asap​
    14·2 answers
  • Evalute the expression 36 + 5 to the power of 3
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!