Answer:
Range: {-4, 3, 5}
Step-by-step explanation:
The range of a function includes all the set of possible output, or y-values in a given data set of a function.
Thus, the range of the function, {(2, 3), (-3, 5), (6, -4)} includes 3, 5, and -4.
This can be written as:
Range: {-4, 3, 5}
Answer:
1. -7/8
2.-9/14
3. 9/14
4. 7/8
2. what is the product of -2/7 and -3/7?
1. -7/8
2.-6/49
3. 6/49
4. 7/8
How do the expressions 72÷ 9 and -72÷ (-9) compare when they are evaluated?
1. They have different values and are different signs.
2. They have different values but are the same sign.
3. They have the same value but are different signs.
4. They have the same value and the same sign.
Step-by-step explanation:
Multiplying fractions: multiply numerators and multiply denominators
1. 3/4 X -6/7 = -18/28 = -9/14
2. -2/7 X -3/7 = 6/49
3. 4 because 72/9 is 8. -72/-9 is 8. Two negatives makes a positive when multiplying and dividing.
Answer:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]: 
L'Hopital's Rule
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
We are given the limit:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D)
When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B0%7D%7B0%7D)
This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D)
Plugging in <em>x</em> = 0 again, we would get:
![\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D%20%3D%20%5Cfrac%7B0%7D%7B0%7D)
Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:
![\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D%20%3D%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-%5Bcos%5E2%282x%29%20%2B%201%5D%7D%7B%5Bcos%282x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%20%2B%20%5Cfrac%7Bcos%5E2%283x%29%20%2B%202%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D%7D%7B2cos%28x%5E2%29%20-%204x%5E2sin%28x%5E2%29%7D)
Substitute in <em>x</em> = 0 once more:
![\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-%5Bcos%5E2%282x%29%20%2B%201%5D%7D%7B%5Bcos%282x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%20%2B%20%5Cfrac%7Bcos%5E2%283x%29%20%2B%202%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D%7D%7B2cos%28x%5E2%29%20-%204x%5E2sin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
And we have our final answer.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Answer:
The answer is B. -7
Step-by-step explanation:
the -7 cancels out the +7 which makes it neutral