Answer:
Spectroscopy
Explanation:
They can determine its composition based on these wavelengths. The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy
Answer:
1.332 g.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- At the same T and P and constant V (1.0 L), different gases have the same no. of moles (n):
<em>∴ (n) of CO₂ = (n) of C₂H₆</em>
<em></em>
∵ n = mass/molar mass
<em>∴ (mass/molar mass) of CO₂ = (mass/molar mass) of C₂H₆</em>
mass of CO₂ = 1.95 g, molar mass of CO₂ = 44.01 g/mol.
mass of C₂H₆ = ??? g, molar mass of C₂H₆ = 30.07 g/mol.
<em>∴ mass of C₂H₆ = [(mass/molar mass) of CO₂]*(molar mass) of C₂H₆</em> = [(1.95 g / 44.01 g/mol)] * (30.07 g/mol) =<em> 1.332 g.</em>
<em></em>
Its C
a catalyst speeds up a reaction by offering the reaction an alternative reaction pathway with a lower activation energy
hope that helps
When we are at STP conditions, we can use this conversion: 1 mol= 22.4 L
0.500 mol C₃H₈ (22.4 L/ 1 mol)= 11.2 L
The problem above can be solved using M1V1=M2V2 where M1 is the concentration of the concentrated, V1 is the volume of the concentrated solution, M2 is the concentration of the Dilute Solution, V2 is the Volume of the dilute solution. Hence,
(3.0 M)(V2)=(250 mL)(1.2M)
V2 (3.0)= 300
V2= 100 mL
Therefore, you need 100 mL of 3.0 M HCl to form a 250 mL of 1.2 M HCl.