If you do in fact mean
(as opposed to one of these being the derivative of
at some point), then integrating twice gives



From the initial conditions, we find


Eliminating
, we get


![C_1 = -\dfrac{\ln(6)}5 = -\ln\left(\sqrt[5]{6}\right) \implies C_2 = \ln\left(\sqrt[5]{6}\right)](https://tex.z-dn.net/?f=C_1%20%3D%20-%5Cdfrac%7B%5Cln%286%29%7D5%20%3D%20-%5Cln%5Cleft%28%5Csqrt%5B5%5D%7B6%7D%5Cright%29%20%5Cimplies%20C_2%20%3D%20%5Cln%5Cleft%28%5Csqrt%5B5%5D%7B6%7D%5Cright%29)
Then
![\boxed{f(x) = \ln|x| - \ln\left(\sqrt[5]{6}\right)\,x + \ln\left(\sqrt[5]{6}\right)}](https://tex.z-dn.net/?f=%5Cboxed%7Bf%28x%29%20%3D%20%5Cln%7Cx%7C%20-%20%5Cln%5Cleft%28%5Csqrt%5B5%5D%7B6%7D%5Cright%29%5C%2Cx%20%2B%20%5Cln%5Cleft%28%5Csqrt%5B5%5D%7B6%7D%5Cright%29%7D)
Answer:
Question: **Actuarial Mathematics, Survival Models** Calculate The Probability That A Life Aged 0 Will Die Between Ages 19 And 36, Given The Survival Function S0(x) = (1/10), 0 X 100 Answer: 0.1.
Step-by-step explanation:
Answer:it’s the second one
Step-by-step explanation:
Let <em>X</em> be a random number selected from the interval. Then the probability density for the random variable <em>X</em> is

8 and 10 are the only even integers that fit the given criterion (6 is more than 0.25 away from 6.35), so that we're looking to compute
P(|<em>X</em> - 8| < 0.25) + P(|<em>X</em> - 10| < 0.25)
… = P(7.75 < <em>X</em> < 8.25) + P(9.75 < <em>X</em> < 10.25)
… = P(7.75 < <em>X</em> < 8.25) + P(9.75 < <em>X</em> < 10)
(since P(<em>X</em> > 10) = 0)
… = 0.2740 (8.25 - 7.75) + 0.2740 (10 - 9.75)
… = 0.2055