<u>Answer:</u> The final volume of the oxygen gas is 4.04 L
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure and number of moles.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the final volume of the oxygen gas is 4.04 L
Answer:
6.67 M
Explanation:
Molarity = 
<em>Convert 200g NaOH to moles. Convert 750 mL to L.</em>
200 g NaOH x (1 mol/39.998 g) = 5.00025... mol NaOH
750 mL x (1 L/1000 mL) = 0.750 L
<em>Substitute values into the equation.</em>
Molarity = 
Molarity = 6.667... M
Molarity = 6.67 M
Answer: 568g/mol
Explanation:
It should be noted that there are 40 atoms of carbon in lycopene.
Since mass of 1 carbon = 12g/mol
Mass of 40 carbon atoms = 40 × 12g/mol = 480g/mol
Let the molar mass of lycopene be represented by x.
Therefore the molar mass of carbon = x × mass percent of carbon in lycopene
x × 84.49% = 480g/mol
x × 0.8449 = 480g/mol
x = 480/0.8449
x = 568g/mol
The molar mass of lycopene is 568g/mol
Answer:
V₁ = 10 mL
Explanation:
Given data:
Initial volume of HCl = ?
Initial molarity = 3.0 M
Final molarity = 0.10 M
Final volume = 300.0 mL
Solution:
Formula:
M₁V₁ = M₂V₂
M₁ = Initial molarity
V₁ = Initial volume of HCl
M₂ =Final molarity
V₂ = Final volume
Now we will put the values.
3.0 M ×V₁ = 0.10 M×300.0 mL
3.0 M ×V₁ = 30 M.mL
V₁ = 30 M.mL /3.0 M
V₁ = 10 mL
Answer:
This law states that the physical and chemical properties of the elements are the periodic function of their atomic masses. This means that when the elements are arranged in the order of their increasing atomic masses, the elements with similar properties recur at regular intervals.
Explanation: