Answer:
Look at the proof down
Step-by-step explanation:
The given is;
→ ∠1 and ∠2 form a linear pair
→ ∠1 ≅ ∠3
We want to prove;
→ ∠2 and ∠3 are supplementary
<em>We will write the proof in like a table</em>
1. ∠1 and ∠2 formed a linear pair ⇒ 1. Given
2. m∠1 + m∠2 = 180° ⇒ 2. Sum of angles on a straight line
3. ∠1 and ∠2 are supplementary angles ⇒ 3. Supplementary angles add up to 180°
4. ∠1 ≅ ∠3 ⇒ 4. Given
5. m∠2 + m∠3 = 180° ⇒ 5. Substitution method
6. ∠3 is a supplement of ∠2 ⇒ 6. Supplement of equal angles
7. ∠2 and ∠3 are supplementary ⇒ 7. Proved
Answer:
ti is m(B{AC=70*
Step-by-step explanation:
Expplanation and Answer:
y=mx−7
Swap sides so that all variable terms are on the left hand side.
mx−7=y
Add 7 to both sides.
mx=y+7
Divide both sides by m.
m
mx
=
m
y+7
Dividing by m undoes the multiplication by m.
x=
m
y+7
It would most likely be D theory