1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
14

100 POINTS HELP PLEASEEEE !!!HURRY!!!

Mathematics
2 answers:
SIZIF [17.4K]3 years ago
6 0

                                           <em>Question # 1 Solution</em>

<em>Answer:</em>

(h-f)(-8)=-229

<em>Step-by-step Solution:</em>

Given

h(r)=-4r^{2}+4

f(r)=2r-7

As

(h-f)(r)=h(r)-f(r)

(h-f)(r)=-4r^{2}+4-(2r-7)

(h-f)(r)=-4r^{2}+4-2r+7)

We have to find (h-f)(-8)

So,

(h-f)(-8)=-4(-8)^{2}+4-2(-8)+7)

(h-f)(-8)=-4(64)+4+16+7

(h-f)(-8)=-4(64)+4+16+7

(h-f)(-8)=-256+4+16+7

(h-f)(-8)=-229

∴ (h-f)(-8)=-229

<em>                                              Question # 2 Solution</em>

Answer:

∴ (f.p)(9)=38979

Step-by-step Solution:

Given

f(s)=7s-2

p(s)=s^{3}-10s

As

(f.p)(s)=f(s).p(s)

(f.p)(s)=(7s-2)(s^{3}-10s)

(f.p)(s)=7s^4-2s^3-70s^2+20s

We have to find (f.p)(9)

So,

(f.p)(9)=7\left(9\right)^4-2\left(9\right)^3-70\left(9\right)^2+20\left(9\right)

(f.p)(9)=7\cdot \:9^4-2\cdot \:9^3-70\cdot \:9^2+20\cdot \:9

(f.p)(9)=9^4\cdot \:7-9^3\cdot \:2-9^2\cdot \:70+180

(f.p)(9)=45927-1458-5670+180

(f.p)(9)=38979

∴ (f.p)(9)=38979

<em>                                       Question # 3 Solution</em>

<em>Answer:</em>

(\frac{f}{p})(r)=\frac{11r+8}{r\left(r^2+6\right)}

<em>Step-by-step Solution:</em>

Given

p(r)=r^{3}+6r

f(r)=11r+8

We have to find (\frac{f}{p})(r)

Using the formula

(\frac{f}{p})(r)=\frac{f(r)}{p(r)}

As

p(r)=r^{3}+6r

f(r)=11r+8

So

(\frac{f}{p})(r)=\frac{11r+8}{r^{3}+6r}

(\frac{f}{p})(r)=\frac{11r+8}{r\left(r^2+6\right)}

∴ (\frac{f}{p})(r)=\frac{11r+8}{r\left(r^2+6\right)}

<em>                                      Question # 4 Solution</em>

<em>Answer:</em>

(h-p)(k)=5k^2-3-k^3-8k

<em>Step-by-step Solution:</em>

Given

h(k)=5k^{2}-3

p(k)=k^{3}+8k

We have to find (h-p)(k)

Using the formula

(h-p)(k)=h(k)-p(k)

As

h(k)=5k^{2}-3

p(k)=k^{3}+8k

So

(h-p)(k)=5k^{2}-3-(k^{3}+8k)

(h-p)(k)=5k^2-3-k^3-8k

∴ (h-p)(k)=5k^2-3-k^3-8k

<em>                                        Question # 5 Solution</em>

<em>Answer:</em>

(\frac{p}{g})(11)=\frac{1287}{155}

<em>Step-by-step Solution:</em>

Given

p(b)=b^{3}-4b

g(b)=b^{2}+4b-10

We have to find (\frac{p}{g})(11)

As

(\frac{p}{g})(b)=\frac{p(b)}{g(b)}

(\frac{p}{g})(b)=\frac{b^{3}-4b}{b^{2}+4b-10}

So

(\frac{p}{g})(11)=\frac{11^{3}-4(11)}{11^{2}+4(11)-10}

(\frac{p}{g})(11)=\frac{1287}{155}

∴ (\frac{p}{g})(11)=\frac{1287}{155}

<em>                                    Question # 6 Solution</em>

<em>Answer:</em>

(f+g)(x)=x^2+20x-18

<em>Step-by-step Solution:</em>

Given

g(x)=x^{2}+11x-7

f(x)=9x-11

We have to find (f+g)(x)

As

(f+g)(x)=f(x)+g(x)

(f+g)(x)=9x-11+(x^{2}+11x-7)

(f+g)(x)=9x-11+x^{2}+11x-7

(f+g)(x)=x^2+20x-18

∴ (f+g)(x)=x^2+20x-18

<em>                                   Question # 7 Solution</em>

<em>Answer:</em>

h(10)+g(10)=-983

<em>Step-by-step Solution:</em>

Given

h(w)=-11w^{2}-7

g(w)=w^{2}+3w-6

We have to find h(10)+g(10)

So,

h(10)=-11(10)^{2}-7

h(10)=-1107.....[1]

and

g(10)=10^{2}+3(10)-6

g(10)=124.....[2]

Adding Equation [1] and Equation [2]

h(10)+g(10)=-1107+124

h(10)+g(10)=-983

∴ h(10)+g(10)=-983

<em>                                    Question # 8 Solution</em>

<em>Answer:</em>

(f+g)(-3)=-6

<em>Step-by-step Solution:</em>

Given

g(b)=b^{2}+9b+10

f(b)=3b+11

We have to find (f+g)(-3)

As

(f+g)(b)=f(b)+g(b)

So

(f+g)(b)=3b+11+b^{2}+9b+10

(f+g)(-3)=3(-3)+11+(-3)^{2}+9(-3)+10

(f+g)(-3)=-6

∴ (f+g)(-3)=-6

<em>                               </em>

<em>                                    Question # 9 Solution</em>

<em>Answer:</em>

(f.h)(k)=33k^3+22k-12k^2-8

<em>Step-by-step Solution:</em>

Given

f(k)=-11k+4

h(k)=-3k^{2}-2

We have to find (f.h)(k)

As

(f.h)(k)=f(k).h(k)

So,

(f.h)(k)=(-11k+4).(-3k^{2}-2)

\mathrm{Apply\:FOIL\:method}:\quad \left(a+b\right)\left(c+d\right)=ac+ad+bc+bd

∵ FOIL means (First, Outer, Inner, Last)

(f.h)(k)=\left(-11k\right)\left(-3k^2\right)+\left(-11k\right)\left(-2\right)+4\left(-3k^2\right)+4\left(-2\right)

(f.h)(k)=33k^3+22k-12k^2-8

∴ (f.h)(k)=33k^3+22k-12k^2-8

<em>                                  Question # 10 Solution</em>

<em>Answer:</em>

p(-8)-f(-8)=-581

<em>Step-by-step Solution:</em>

Given

p(s)=s^{3}+6s

f(s)=-2s+5

We have to find p(-8)-f(-8)

So,

p(-8)=(-8)^{3}+6(-8)

p(-8)=-560.....[1]

and

f(-8)=-2(-8)+5

f(-8)=21.....[2]

Subtracting Equation [2] from Equation [1]

p(-8)-f(-8)=-560-21

p(-8)-f(-8)=-581

∴ p(-8)-f(-8)=-581

<em>Keywords: function operation</em>

<em>Learn more about function operations from brainly.com/question/3725682</em>

<em>#learnwithBrainly</em>

Umnica [9.8K]3 years ago
6 0

Answer:

-2229

Step-by-step explanation:

You might be interested in
Use the long division method to find the result when x^3+7x^2+12x+6x 3 +7x 2 +12x+6 is divided by x+1x+1. If there is a remainde
Aliun [14]

Answer:

By long division (x³ + 7·x² + 12·x + 6) ÷ (x + 1) gives the expression;

x^2 + 5 \cdot x + 7 - \dfrac{1}{(x + 1)}

Step-by-step explanation:

The polynomial that is to be divided by long division is x³ + 7·x² + 12·x + 6

The polynomial that divides the given polynomial is x + 1

Therefore, we have;

\ \ \ \ \ \  \ \ \ \ \ \ x^2 + 5\cdot x + 7\\ (x + 1) \sqrt{x^3 + 7\cdot x^2 +12\cdot x + 6} \\\ {} \  {} \ {}  \  \ {} \  {} \ {}  \ {} \  {} \ {}   \ {}     \ \ x^3 + 2 \cdot x^2 \\\  \ \ \ {} \   \ {} \  {} \ {}   \  \ {} \ {} \  \   \ {} \  {} \ {}  \  \ {} \  {} \ {}  \ \ 5 \cdot x^2 + 12\cdot x + 6\\  \ {} \  {} \ {}    \ {} \  {} \ {}  \ \ {} \ {} 5 \cdot x^2 + 5\cdot x\\\ 7\cdot x+6\\7\cdot x+7\\-1

(x³ + 7·x² + 12·x + 6) ÷ (x + 1) = x² + 5·x + 7 Remainder -1

Expressing the result in the form q(x) + \dfrac{r(x)}{b(x)}, we have;

(x^3 + 7\cdot x^2 + 12 \cdot x + 6)\div (x + 1) =  x^2 + 5 \cdot x + 7 - \dfrac{1}{(x + 1)}

4 0
3 years ago
Jasmine wants to have an equal quantity of forks and spoons, what is the least number of packages of forks jasmine should buy to
vlada-n [284]

Answer:

6 packages of forks

Step-by-step explanation:

If Jasmine wants to have an equal quantity of forks and spoons, we need to list the multiples of each quantity and determine the least common multiple (LCM).

Forks: 10, 20, 30, 40, 50, 60, 70, 80, 90

Spoons: 12, 24, 36, 48, 60, 72, 84, 96

The LCM in this example is 60. In order to have exactly 60 forks and 60 spoons, Jasmine will need to buy 6 packages of forks [60 ÷ 10 = 6] and 5 packages of spoons [60 ÷ 12 = 5].

4 0
4 years ago
aaron bought a $3000.00 car from chad used cars. what was his cost of credit if he had a 4 year loan at 3.5% interest
stepladder [879]
I=ptr
i=(3000)(1461)(3.5%)
i=153405

his cost will be $153 405 by 4 years
4 0
4 years ago
BEST ANSWER GETS BRAINLIEST(how many centimeteres are in 4.4 inches? [ 1 inch = 2.5 cm] EXPLAIN with details..
Assoli18 [71]
11.176 centimeters are in 4.4 inches! Reason being is all you need to do multiply the length value by 2.54!

I hope this helped! Mark me Brainliest! :) -Raven❤️
4 0
4 years ago
Read 2 more answers
Find the slope between the following points (-2,3).and (-7.-2)​
castortr0y [4]

Answer:

slope equals the change in x over the change in y. So slope equal negative 1.

8 0
3 years ago
Other questions:
  • Suppose that COP and TOD are vertical angles, m COP = 11x - 17
    15·1 answer
  • A jug of orange juice can fill 4 large mugs. A large mug can fill 5 small cups. How many jugs of orange juice are needed to fill
    7·2 answers
  • Maureen went on a 3 day 50 mile trip. the first day she biked 17 7/8 miles . the second day she biked 18 5/7 miles. How many mil
    11·1 answer
  • A scientist created a scatterplot to display the height of a plant over a 12-day period. Plant Height A graph has days on the x-
    10·2 answers
  • the length of AB_ is 9 cm a dilation with a scale factor of 2 is applied to AB_ what is the length of the image of AB after the
    7·1 answer
  • Alex scored 98,72, and 87 on his first three math test. What must he score on the next test to have an average of at least 86 (P
    13·1 answer
  • What are surds? how many types of surds are there?​
    8·2 answers
  • The data below consists of the test scores of 32 students. Construct a 99% confidence interval for thepopulation mean.
    13·1 answer
  • Alfred has nine times as many cookies as Jerry. Together, they have forty cookies. How many cookies do each person have?
    6·1 answer
  • Find the term indecent of x in the expansion of (x^2-1/x)^6
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!