1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
14

100 POINTS HELP PLEASEEEE !!!HURRY!!!

Mathematics
2 answers:
SIZIF [17.4K]3 years ago
6 0

                                           <em>Question # 1 Solution</em>

<em>Answer:</em>

(h-f)(-8)=-229

<em>Step-by-step Solution:</em>

Given

h(r)=-4r^{2}+4

f(r)=2r-7

As

(h-f)(r)=h(r)-f(r)

(h-f)(r)=-4r^{2}+4-(2r-7)

(h-f)(r)=-4r^{2}+4-2r+7)

We have to find (h-f)(-8)

So,

(h-f)(-8)=-4(-8)^{2}+4-2(-8)+7)

(h-f)(-8)=-4(64)+4+16+7

(h-f)(-8)=-4(64)+4+16+7

(h-f)(-8)=-256+4+16+7

(h-f)(-8)=-229

∴ (h-f)(-8)=-229

<em>                                              Question # 2 Solution</em>

Answer:

∴ (f.p)(9)=38979

Step-by-step Solution:

Given

f(s)=7s-2

p(s)=s^{3}-10s

As

(f.p)(s)=f(s).p(s)

(f.p)(s)=(7s-2)(s^{3}-10s)

(f.p)(s)=7s^4-2s^3-70s^2+20s

We have to find (f.p)(9)

So,

(f.p)(9)=7\left(9\right)^4-2\left(9\right)^3-70\left(9\right)^2+20\left(9\right)

(f.p)(9)=7\cdot \:9^4-2\cdot \:9^3-70\cdot \:9^2+20\cdot \:9

(f.p)(9)=9^4\cdot \:7-9^3\cdot \:2-9^2\cdot \:70+180

(f.p)(9)=45927-1458-5670+180

(f.p)(9)=38979

∴ (f.p)(9)=38979

<em>                                       Question # 3 Solution</em>

<em>Answer:</em>

(\frac{f}{p})(r)=\frac{11r+8}{r\left(r^2+6\right)}

<em>Step-by-step Solution:</em>

Given

p(r)=r^{3}+6r

f(r)=11r+8

We have to find (\frac{f}{p})(r)

Using the formula

(\frac{f}{p})(r)=\frac{f(r)}{p(r)}

As

p(r)=r^{3}+6r

f(r)=11r+8

So

(\frac{f}{p})(r)=\frac{11r+8}{r^{3}+6r}

(\frac{f}{p})(r)=\frac{11r+8}{r\left(r^2+6\right)}

∴ (\frac{f}{p})(r)=\frac{11r+8}{r\left(r^2+6\right)}

<em>                                      Question # 4 Solution</em>

<em>Answer:</em>

(h-p)(k)=5k^2-3-k^3-8k

<em>Step-by-step Solution:</em>

Given

h(k)=5k^{2}-3

p(k)=k^{3}+8k

We have to find (h-p)(k)

Using the formula

(h-p)(k)=h(k)-p(k)

As

h(k)=5k^{2}-3

p(k)=k^{3}+8k

So

(h-p)(k)=5k^{2}-3-(k^{3}+8k)

(h-p)(k)=5k^2-3-k^3-8k

∴ (h-p)(k)=5k^2-3-k^3-8k

<em>                                        Question # 5 Solution</em>

<em>Answer:</em>

(\frac{p}{g})(11)=\frac{1287}{155}

<em>Step-by-step Solution:</em>

Given

p(b)=b^{3}-4b

g(b)=b^{2}+4b-10

We have to find (\frac{p}{g})(11)

As

(\frac{p}{g})(b)=\frac{p(b)}{g(b)}

(\frac{p}{g})(b)=\frac{b^{3}-4b}{b^{2}+4b-10}

So

(\frac{p}{g})(11)=\frac{11^{3}-4(11)}{11^{2}+4(11)-10}

(\frac{p}{g})(11)=\frac{1287}{155}

∴ (\frac{p}{g})(11)=\frac{1287}{155}

<em>                                    Question # 6 Solution</em>

<em>Answer:</em>

(f+g)(x)=x^2+20x-18

<em>Step-by-step Solution:</em>

Given

g(x)=x^{2}+11x-7

f(x)=9x-11

We have to find (f+g)(x)

As

(f+g)(x)=f(x)+g(x)

(f+g)(x)=9x-11+(x^{2}+11x-7)

(f+g)(x)=9x-11+x^{2}+11x-7

(f+g)(x)=x^2+20x-18

∴ (f+g)(x)=x^2+20x-18

<em>                                   Question # 7 Solution</em>

<em>Answer:</em>

h(10)+g(10)=-983

<em>Step-by-step Solution:</em>

Given

h(w)=-11w^{2}-7

g(w)=w^{2}+3w-6

We have to find h(10)+g(10)

So,

h(10)=-11(10)^{2}-7

h(10)=-1107.....[1]

and

g(10)=10^{2}+3(10)-6

g(10)=124.....[2]

Adding Equation [1] and Equation [2]

h(10)+g(10)=-1107+124

h(10)+g(10)=-983

∴ h(10)+g(10)=-983

<em>                                    Question # 8 Solution</em>

<em>Answer:</em>

(f+g)(-3)=-6

<em>Step-by-step Solution:</em>

Given

g(b)=b^{2}+9b+10

f(b)=3b+11

We have to find (f+g)(-3)

As

(f+g)(b)=f(b)+g(b)

So

(f+g)(b)=3b+11+b^{2}+9b+10

(f+g)(-3)=3(-3)+11+(-3)^{2}+9(-3)+10

(f+g)(-3)=-6

∴ (f+g)(-3)=-6

<em>                               </em>

<em>                                    Question # 9 Solution</em>

<em>Answer:</em>

(f.h)(k)=33k^3+22k-12k^2-8

<em>Step-by-step Solution:</em>

Given

f(k)=-11k+4

h(k)=-3k^{2}-2

We have to find (f.h)(k)

As

(f.h)(k)=f(k).h(k)

So,

(f.h)(k)=(-11k+4).(-3k^{2}-2)

\mathrm{Apply\:FOIL\:method}:\quad \left(a+b\right)\left(c+d\right)=ac+ad+bc+bd

∵ FOIL means (First, Outer, Inner, Last)

(f.h)(k)=\left(-11k\right)\left(-3k^2\right)+\left(-11k\right)\left(-2\right)+4\left(-3k^2\right)+4\left(-2\right)

(f.h)(k)=33k^3+22k-12k^2-8

∴ (f.h)(k)=33k^3+22k-12k^2-8

<em>                                  Question # 10 Solution</em>

<em>Answer:</em>

p(-8)-f(-8)=-581

<em>Step-by-step Solution:</em>

Given

p(s)=s^{3}+6s

f(s)=-2s+5

We have to find p(-8)-f(-8)

So,

p(-8)=(-8)^{3}+6(-8)

p(-8)=-560.....[1]

and

f(-8)=-2(-8)+5

f(-8)=21.....[2]

Subtracting Equation [2] from Equation [1]

p(-8)-f(-8)=-560-21

p(-8)-f(-8)=-581

∴ p(-8)-f(-8)=-581

<em>Keywords: function operation</em>

<em>Learn more about function operations from brainly.com/question/3725682</em>

<em>#learnwithBrainly</em>

Umnica [9.8K]3 years ago
6 0

Answer:

-2229

Step-by-step explanation:

You might be interested in
Pleased help me answer this I'm confused. look at picture​
skad [1K]

Answer:

23 + 16 = 39

39 - 16 = 23

the student did not reverse the sum correctly

7 0
3 years ago
Point R is located on segment QS. If QR = 10 and RS = 7, what is the measure of QS?
Vadim26 [7]

Answer:

QS = 17 units

Step-by-step explanation:

Given:

R located at QS

QR = 10

RS = 7

Find:

Measure of QS

Computation:

QS = QR + RS

QS = 10 + 7

QS = 17 units

6 0
3 years ago
A set of 200 test scores are normally distributed with a mean of 70 and a standard deviation of 5. Approximately how many studen
spin [16.1K]

Answer:  About 191 students scored between a 60 and an 80.

Step-by-step explanation:

Given : A set of 200 test scores are normally distributed with a mean of 70 and a standard deviation of 5.

i.e. \mu=70 and \sigma=5

let x be the random variable that denotes the test scores.

Then, the probability that the students scored between a 60 and an 80 :

P(60

The number of students scored between a 60 and an 80 = 0.9544 x 200

= 190.88 ≈ 191

Hence , about 191 students scored between a 60 and an 80.

8 0
3 years ago
What is the area of a square with sides of x+1
alexdok [17]
Area = (x+1) * (x+1)
Area = x^2 +2x + 1

5 0
3 years ago
Read 2 more answers
Subtract (2x^3+9x-8)-(4x^2-15x+7)
scoundrel [369]
(2x^3+9x)-(4x^2-15x+7)
(8x+9x)-(16x-15x+7)
(17x)-(1x+7)
 16x+7
3 0
3 years ago
Other questions:
  • If y varies directly as x, and y is 400 when x is randy is r when x is 4, what is the numeric constant of variation in this rela
    8·1 answer
  • 6x^2+2x=3 round to the nearest hundreths
    14·1 answer
  • This is the problem<br> Dan says 3/5 Is the same as 3.5. Is he correct? Explain
    5·2 answers
  • The first three terms of a sequence are given. Round to the nearest thousandth (if
    15·1 answer
  • Bonny's Truck has a fuel tank
    5·1 answer
  • Perfect adjective word chain​
    15·1 answer
  • Evaluate <br> 4x3x8-2x(8x5-37)
    5·1 answer
  • Determine if the expression -a^3b^5 is a polynomial or not. If it is a polynomial, state
    5·1 answer
  • 100 POINTS FOR THE CORRECT ANSWER
    5·1 answer
  • Pls help me with this one
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!