The answer is: "3" .
_______________________________
Use the Pythagorean theorem (for right triangles):
a² + b² = c² ;
in which "a = "side length 1" (unknown; for which we which to solve);
"b" = "side length 2" = "√3" (given in the figure) ;
"c" = "length of hypotenuse" = "2√3" (given in the figure);
_____________________________________________________
a² + b² = c² ;
a² = c² − b² ;
Plug in the known values for "c" and "b" ;
a² = (2√3)² − (√3)² ;
Simplify:
(2√3)² = 2² * (√3)² = 2 * 2 * (√3√3) = 4 * 3 = 12 .
(√3)² = (√3√3) = 3 .
a² = 12 − 3 = 9 .
a² = 9
Take the "positive square root" of EACH SIDE of the equation; to isolate "a" on one side of the equation; & to solve for "a" ;
+√(a²) = +√9 ;
a = 3 .
____________________________________
The answer is: "3" .
____________________________________
Bear in mind that, when it comes to trigonometric functions, the location of the exponent can be a bit misleading, however recall that sin²(θ) is really [ sin( θ )]²,
![\bf 2sin^2(2x)=2\implies sin^2(2x)=\cfrac{2}{2} \\\\\\ sin^2(2x)=1\implies [sin(2x)]^2=1\implies sin(2x)=\pm\sqrt{1} \\\\\\ sin(2x)=\pm 1\implies sin^{-1}[sin(2x)]=sin^{-1}(\pm 1)](https://tex.z-dn.net/?f=%5Cbf%202sin%5E2%282x%29%3D2%5Cimplies%20sin%5E2%282x%29%3D%5Ccfrac%7B2%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0Asin%5E2%282x%29%3D1%5Cimplies%20%5Bsin%282x%29%5D%5E2%3D1%5Cimplies%20sin%282x%29%3D%5Cpm%5Csqrt%7B1%7D%0A%5C%5C%5C%5C%5C%5C%0Asin%282x%29%3D%5Cpm%201%5Cimplies%20sin%5E%7B-1%7D%5Bsin%282x%29%5D%3Dsin%5E%7B-1%7D%28%5Cpm%201%29)
Answer:
Option c
or 
Step-by-step explanation:
The absolute value is a function that transforms any value x into a positive number.
Therefore, for the function
x> 0 for all real numbers.
Then the inequation:
has two cases
if
(i)
if
(ii)
We solve the case (i)

We solve the case (ii)

Then the solution is:
or 
Answer:
Right angle triangle goes to 15m, 8m, 17m
Step-by-step explanation:
Square root of 15^2 + 8^2 is 17
(The use of a^2 + b^2 = c^2 - Pythagoras's Theorem)
So, 10m ,11m ,15m isn't a right angle triangle
Hope this helps!
Answer:(x+3)(3x+4)
Step-by-step explanation: