A pendulum is not a wave.
-- A pendulum doesn't have a 'wavelength'.
-- There's no way to define how many of its "waves" pass a point
every second.
-- Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.
-- The frequency of a pendulum depends only on the length
of the string from which it hangs.
If you take the given information and try to apply wave motion to it:
Wave speed = (wavelength) x (frequency)
Frequency = (speed) / (wavelength) ,
you would end up with
Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz
Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ? That's pretty absurd.
This math is not applicable to the pendulum.
Answer:
RMS voltage is 113.1370 V
frequency is 780.685 Hz
voltage is −158.66942 V
maximum current is 2.9739 A
Explanation:
Given data
∆V = 160.0 sin(495t) Volts
so Vmax = 160
and angular frequency = 495
time t = 1/106 s
resistor R = 53.8 Ω
to find out
RMS voltage and frequency of the source and voltage and maximum current
solution
we know voltage equation = Vmax sin ωt
here Vmax is 160 as given equation in question
so RMS will be Vmax / √2
RMS voltage = 160/ √2
RMS voltage is 113.1370 V
and frequency = angular frequency / 2π
so frequency = 497 / 2π
frequency is 780.685 Hz
voltage at time (1/106) s
V(t) = 160.0 sin(495/ 108)
voltage = −158.66942 V
so current from ohm law at resistor R 53.8 Ω
maximum current = voltage max / resistor
maximum current = 160 / 53.8
maximum current = 2.9739 A
Answer:
Petroleum is a nonrenewable resource. This being because it is a natural gas that take millions of years for it to reform which means each part of it is a once in a lifetime use.
Answer:
Acceleration
Explanation:
Acceleration has units of length per time squared.
Explanation:
The nucleus of an atom can be modeled as several protons and neutrons closely packed together.
Mass of the particle, 
Radius of the particle, 
(a) The density of the nucleus of an atom is given by mass per unit area of the particle. Mathematically, it is given by :
, V is the volume of the particle



So, the density of the nucleus of an atom is
.
(b) Density of iron, 
Taking ratio of the density of nucleus of an atom and the density of iron as :



So, the density of the nucleus of an atom is
times greater than the density of iron. Hence, this is the required solution.