By definition of conditional probability,
![P(X_1=4\text{ or }X_2=4\mid X_1+X_2=7)=\dfrac{P((X_1=4\text{ or }X_2=4)\text{ and }X_1+X_2=7)}{P(X_1+X_2=7)}](https://tex.z-dn.net/?f=P%28X_1%3D4%5Ctext%7B%20or%20%7DX_2%3D4%5Cmid%20X_1%2BX_2%3D7%29%3D%5Cdfrac%7BP%28%28X_1%3D4%5Ctext%7B%20or%20%7DX_2%3D4%29%5Ctext%7B%20and%20%7DX_1%2BX_2%3D7%29%7D%7BP%28X_1%2BX_2%3D7%29%7D)
![=\dfrac{P((X_1=4\text{ and }X_1+X_2=7)\text{ or }(X_2=4\text{ and }X_1+X_2=7))}{P(X_1+X_2=7)}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7BP%28%28X_1%3D4%5Ctext%7B%20and%20%7DX_1%2BX_2%3D7%29%5Ctext%7B%20or%20%7D%28X_2%3D4%5Ctext%7B%20and%20%7DX_1%2BX_2%3D7%29%29%7D%7BP%28X_1%2BX_2%3D7%29%7D)
Assuming a standard 6-sided fair die,
- if
, then
means
; otherwise, - if
, then
.
Both outcomes are mutually exclusive with probability
each, hence total probability
.
Of the 36 possible outcomes, there are 6 ways to sum the integers 1-6 to get 7:
(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)
and so a sum of 7 occurs
of the time.
Then the probability we want is
![P(X_1=4\text{ or }X_2=4\mid X_1+X_2=7)=\dfrac{\frac1{18}}{\frac16}=\frac13](https://tex.z-dn.net/?f=P%28X_1%3D4%5Ctext%7B%20or%20%7DX_2%3D4%5Cmid%20X_1%2BX_2%3D7%29%3D%5Cdfrac%7B%5Cfrac1%7B18%7D%7D%7B%5Cfrac16%7D%3D%5Cfrac13)