Answer:
b=14
Step-by-step explanation:
42 divided by 3 is 14
Answer:
(i) ∠ABH = 14.5°
(ii) The length of AH = 4.6 m
Step-by-step explanation:
To solve the problem, we will follow the steps below;
(i)Finding ∠ABH
first lets find <HBC
<BHC + <HBC + <BCH = 180° (Sum of interior angle in a polygon)
46° + <HBC + 90 = 180°
<HBC+ 136° = 180°
subtract 136 from both-side of the equation
<HBC+ 136° - 136° = 180° -136°
<HBC = 44°
lets find <ABC
To do that, we need to first find <BAC
Using the sine rule
= 
A = ?
a=6.9
C=90
c=13.2
= 
sin A = 6.9 sin 90 /13.2
sinA = 0.522727
A = sin⁻¹ ( 0.522727)
A ≈ 31.5 °
<BAC = 31.5°
<BAC + <ABC + <BCA = 180° (sum of interior angle of a triangle)
31.5° +<ABC + 90° = 180°
<ABC + 121.5° = 180°
subtract 121.5° from both-side of the equation
<ABC + 121.5° - 121.5° = 180° - 121.5°
<ABC = 58.5°
<ABH = <ABC - <HBC
=58.5° - 44°
=14.5°
∠ABH = 14.5°
(ii) Finding the length of AH
To find length AH, we need to first find ∠AHB
<AHB + <BHC = 180° ( angle on a straight line)
<AHB + 46° = 180°
subtract 46° from both-side of the equation
<AHB + 46°- 46° = 180° - 46°
<AHB = 134°
Using sine rule,
= 
AH = 13.2 sin 14.5 / sin 134
AH≈4.6 m
length AH = 4.6 m
Answer:
Range: [-7, 8]
General Formulas and Concepts:
<u>Algebra I</u>
- Reading a coordinate plane
- Range is the set of y-values that are outputted by function f(x)
- Interval Notation: [Brackets] denote inclusion, (Parenthesis) denote exclusion
Step-by-step explanation:
According to the graph, our y-values span from -7 to 8. Since both are closed dot, they are included in the range:
Range: [-7, 8]
Answer : 12 square root 5
4 square root 45
4 square root 9 times square root 5
4 time 3 square root 5
12 square root 5
Answer:
Minimum value of function
is 63 occurs at point (3,6).
Step-by-step explanation:
To minimize :

Subject to constraints:

Eq (1) is in blue in figure attached and region satisfying (1) is on left of blue line
Eq (2) is in green in figure attached and region satisfying (2) is below the green line
Considering
, corresponding coordinates point to draw line are (0,9) and (9,0).
Eq (3) makes line in orange in figure attached and region satisfying (3) is above the orange line
Feasible region is in triangle ABC with common points A(0,9), B(3,9) and C(3,6)
Now calculate the value of function to be minimized at each of these points.

at A(0,9)

at B(3,9)

at C(3,6)

Minimum value of function
is 63 occurs at point C (3,6).