Answer:
600 minutes
Step-by-step explanation:
If we write both situations as an equation, we get:
y1 = 24 + 0.15x
<em>y1 </em><em>:</em><em> </em><em>total </em><em>cost </em><em>paid </em><em>in </em><em>first </em><em>plan</em>
<em>x </em><em>:</em><em> </em><em>total minutes </em><em>of </em><em>calls</em>
y2 = 0.19x
<em>y2 </em><em>:</em><em> </em><em>total </em><em>cost </em><em>in </em><em>second </em><em>plan</em>
<em>x:</em><em> </em><em>total </em><em>min</em><em>utes </em><em>of </em><em>call</em>
We are now looking for the situation where the total cost in the two plans is equal, so
y1 = y2
this gives
24 + 0.15x = 0.19x
<=> 0.04x = 24
<=> x = 600
Answer:
A. {−3.5, −2, 1, 2.5}
Step-by-step explanation:
Remember that the range is the possible values for Y in any given function, so in this case, we are given the Y values and we have to solve the function for x:
y=9+6x
6x=y-9
So we just insert the values, the first one being -12.
So since from the options only A has -3.5 as an option that's the correct answer.
hoped this helped! <3
So it should be y = 2*2^x
Where x is the time and y is the final width after x minutes
Answer:
y = -1/5 x + 2
Step-by-step explanation:
y = 5x - 4
m = 5
Slope of perpendicular = -1/5
Equation of perpendicular:
y = mx + b
y = -1/5 x + b
Use point (15, -1) for x and y, and solve for b.
-1 = -1/5(15) + b
-1 = -3 + b
b = 2
Equation of perpendicular:
y = -1/5 x + 2