Answer:
You may be asked to "determine algebraically" whether a function is even or odd. To do this, you take the function and plug –x in for x, and then simplify. If you end up with the exact same function that you started with (that is, if f (–x) = f (x), so all of the signs are the same), then the function is even.
Answer:
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Slope Formula:
Step-by-step explanation:
<u>Step 1: Define</u>
Point (-1.25, -18.5)
Point (0.25, -30)
<u>Step 2: Find slope </u><em><u>m</u></em>
- Substitute:
- Add:
- Divide:
Answer:
Step-by-step explanation:
Once we know the diameter of the circle, we can figure out the problem.
The diameter of the circle = The diagonal of the rectangle inscribed in the circle
To find the diagonal of the rectangle, we can use a formula.
The width is 10 cm and the length is 12 cm.
The diagonal of the rectangle inscribed in the circle is 15.62 cm.
The diameter of the circle is 15.62 cm.
Find the area of the whole circle.
The is the radius of the circle, to find radius from diameter we can divide the value by 2.
Let’s find the area now.
Find the area of rectangle.
Length × Width.
Subtract the area of the whole circle with the area of rectangle to find area of shaded part.
Answer:
Step-by-step explanation:
<u>Trinomio Cuadrado Perfecto</u>
El producto notable llamado cuadrado de un binomio se expresa como:
Si se tiene un trinomio, es posible convertirlo en un cuadrado perfecto si cumple con las condiciones impuestas en la fórmula:
* El primer término es un cuadrado perfecto
* El último término es un cuadrado perfecto
* El segundo término es el doble del proudcto de los dos términos del binomio.
Tenemos la expresión:
Calculamos el valor de a como la raiz cuadrada del primer término del trinomio:
Calculamos el valor de a como la raiz cuadrada del primer término del trinomio:
Nos cercioramos de que el término central es 2ab:
Operando:
Una vez verificado, ahora podemos decir que:
4x - 5 = 11
4x = 11 + 5 = 16
4x = 16
Divide by 4 from both sides
X = 4