1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irinina [24]
3 years ago
7

Mary has rehearsed her ballet solo for five and a half hours. A week from now, she wants to have rehearsed at least a total of n

ineteen and a half hours. If she rehearses for the same amount of time each day for the next 7 days, at least how many hours must she rehearse per day?
Mathematics
2 answers:
IgorLugansk [536]3 years ago
8 0

Answer:

2 hours per day

Step-by-step explanation:

Given : Mary has rehearsed her ballet solo for five and a half hours. A week from now, she wants to have rehearsed at least a total of nineteen and a half hours.

To Find : If she rehearses for the same amount of time each day for the next 7 days, at least how many hours must she rehearse per day?

Solution :

Mary has rehearsed her ballet solo = 5\frac{1}{2} =5.5 hours

She wants to have rehearsed at least a total of 19\frac{1}{2} =19.5 hours

So, hours left for rehearsel = 19.5-5.5= 14 hours

If she rehearses for the same amount of time each day for the next 7 days

So, she rehearsed each day = 14/7 = 2 hours

Hence  she must rehearse for 2 hours per day

djverab [1.8K]3 years ago
3 0
The answer to this problem is 2
You might be interested in
1. un numar se mareste cu 4 iar rezultatul se mareste de 4 ori. noul rezultat micsorat cu 4 se imparte la 4 si se obtine 4.aflat
Marat540 [252]

Răspuns:

1

Explicație pas cu pas:

Fie numărul = x

x + 4 = e - - (1)

e * 4 = f - - - (2)

Ecuația 2 - 4 împărțită la 4 = 4

(f - 4) / 4 = 4

Crucea se înmulțește

f - 4 = 16

f = 16 + 4

f = 20

Rezultatul 1 împărțit la 4 este egal cu 4

Prin urmare,

e = f / 4

f = 20

e = 20/4

e = 5

De la (1)

x + 4 = e

x + 4 = 5

x = 5 - 4

x = 1

7 0
3 years ago
25 points !!! ( pls don’t answer if you don’t have the answer I will report you)
KIM [24]

side length of square =4

side length of cube=3

hence the correct statement is,

the side length of the cube is less than the side length of the square

6 0
3 years ago
Find all the complex roots. Write the answer in exponential form.
dezoksy [38]

We have to calculate the fourth roots of this complex number:

z=9+9\sqrt[]{3}i

We start by writing this number in exponential form:

\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}

Then, the exponential form is:

z=18e^{\frac{\pi}{3}i}

The formula for the roots of a complex number can be written (in polar form) as:

z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot\lbrack\cos (\frac{\theta+2\pi k}{n})+i\cdot\sin (\frac{\theta+2\pi k}{n})\rbrack\text{ for }k=0,1,\ldots,n-1

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.

To simplify the calculations, we start by calculating the fourth root of r:

r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}

<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>

Then, we calculate the arguments of the trigonometric functions:

\frac{\theta+2\pi k}{n}=\frac{\frac{\pi}{2}+2\pi k}{4}=\frac{\pi}{8}+\frac{\pi}{2}k=\pi(\frac{1}{8}+\frac{k}{2})

We can now calculate for each value of k:

\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}

Answer:

The four roots in exponential form are

z0 = 18^(1/4)*e^(i*π/8)

z1 = 18^(1/4)*e^(i*5π/8)

z2 = 18^(1/4)*e^(i*9π/8)

z3 = 18^(1/4)*e^(i*13π/8)

5 0
1 year ago
Which of the following functions are homomorphisms?
Vikentia [17]
Part A:

Given f:Z \rightarrow Z, defined by f(x)=-x

f(x+y)=-(x+y)=-x-y \\  \\ f(x)+f(y)=-x+(-y)=-x-y

but

f(xy)=-xy \\  \\ f(x)\cdot f(y)=-x\cdot-y=xy

Since, f(xy) ≠ f(x)f(y)

Therefore, the function is not a homomorphism.



Part B:

Given f:Z_2 \rightarrow Z_2, defined by f(x)=-x

Note that in Z_2, -1 = 1 and f(0) = 0 and f(1) = -1 = 1, so we can also use the formular f(x)=x

f(x+y)=x+y \\  \\ f(x)+f(y)=x+y

and

f(xy)=xy \\  \\ f(x)\cdot f(y)=xy

Therefore, the function is a homomorphism.



Part C:

Given g:Q\rightarrow Q, defined by g(x)= \frac{1}{x^2+1}

g(x+y)= \frac{1}{(x+y)^2+1} = \frac{1}{x^2+2xy+y^2+1}  \\  \\ g(x)+g(y)= \frac{1}{x^2+1} + \frac{1}{y^2+1} = \frac{y^2+1+x^2+1}{(x^2+1)(y^2+1)} = \frac{x^2+y^2+2}{x^2y^2+x^2+y^2+1}

Since, f(x+y) ≠ f(x) + f(y), therefore, the function is not a homomorphism.



Part D:

Given h:R\rightarrow M(R), defined by h(a)=  \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)

h(a+b)= \left(\begin{array}{cc}-(a+b)&0\\a+b&0\end{array}\right)= \left(\begin{array}{cc}-a-b&0\\a+b&0\end{array}\right) \\  \\ h(a)+h(b)= \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)+ \left(\begin{array}{cc}-b&0\\b&0\end{array}\right)=\left(\begin{array}{cc}-a-b&0\\a+b&0\end{array}\right)

but

h(ab)= \left(\begin{array}{cc}-ab&0\\ab&0\end{array}\right) \\  \\ h(a)\cdot h(b)= \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)\cdot \left(\begin{array}{cc}-b&0\\b&0\end{array}\right)= \left(\begin{array}{cc}ab&0\\-ab&0\end{array}\right)

Since, h(ab) ≠ h(a)h(b), therefore, the funtion is not a homomorphism.



Part E:

Given f:Z_{12}\rightarrow Z_4, defined by \left([x_{12}]\right)=[x_4], where [u_n] denotes the lass of the integer u in Z_n.

Then, for any [a_{12}],[b_{12}]\in Z_{12}, we have

f\left([a_{12}]+[b_{12}]\right)=f\left([a+b]_{12}\right) \\  \\ =[a+b]_4=[a]_4+[b]_4=f\left([a]_{12}\right)+f\left([b]_{12}\right)

and

f\left([a_{12}][b_{12}]\right)=f\left([ab]_{12}\right) \\ \\ =[ab]_4=[a]_4[b]_4=f\left([a]_{12}\right)f\left([b]_{12}\right)

Therefore, the function is a homomorphism.
7 0
3 years ago
What is 9+m=1.5<br><br><br>i need the answer for m
Oksi-84 [34.3K]

Answer:

m = - 7.5

Step-by-step explanation:

Given

9 + m = 1.5 ( subtract 9 from both sides )

m = - 7.5

5 0
3 years ago
Other questions:
  • 1. What is the probability of rolling a number greater than a 4 on a standard dice? Remember to reduce your fraction.
    8·2 answers
  • the first row an auditorium has 24 seats. the second row has 28 seats, and the third row has 32 seats. if this patterns continue
    7·2 answers
  • Find the exact value of <br> sin−1−32
    10·1 answer
  • Making Choices
    14·1 answer
  • The table below shows a relationship between the variables x and y. Explain
    7·1 answer
  • Please help me<br> I don’t know this
    14·1 answer
  • Can someone please help with this math question??
    14·1 answer
  • Gieo một con xúc xắc đồng chất, gọi biến cố A="Số chấm lớn hơn 3" , B="Số chấm là số chẵn". Tính P(A/B)
    7·1 answer
  • Hey can yall help me asap
    10·1 answer
  • Geometry question confused on how to solve this answer
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!