There are 5 steps:
1- measure the mass of the container
2- measure the volume of the liquid
3- measure the combined mass of the liquid and the container.
4-determine the mass of the liquid alone
5-divide the mass by the volume.
Answer:
The ration of the molar solubility is 165068.49.
Explanation:
The solubility reaction of the magnesium hydroxide in the pure water is as follows.

![[Mg^{2+}][OH^{-}]](https://tex.z-dn.net/?f=%5BMg%5E%7B2%2B%7D%5D%5BOH%5E%7B-%7D%5D)
Initial 0 0
Equili +S +2S
Final S 2S
![K_{sp}=[Mg^{2+}][OH^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BMg%5E%7B2%2B%7D%5D%5BOH%5E%7B-%7D%5D)


Solubility of
in 0.180 M NaOH is a follows.

![[Mg^{2+}][OH^{-}]](https://tex.z-dn.net/?f=%5BMg%5E%7B2%2B%7D%5D%5BOH%5E%7B-%7D%5D)
Initial 0 0
Equili +S +2S
Final S 2S+0.180M
![K_{sp}=[Mg^{2+}][OH^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BMg%5E%7B2%2B%7D%5D%5BOH%5E%7B-%7D%5D)



Therefore, The ration of the molar solubility is 165068.49.
CaO ( calcium oxide) is a basic oxide.
<span>a thermodynamic quantity representing the unavailability of a system's thermal energy for conversion into mechanical work, often interpreted as the degree of disorder or randomness in the system.</span>
The substance most likely is an inert element because it is only composed of one kind of atom and cant be separated further. Also, it cannot be converted to another type of substance. An inert material doesn't react to any substance. Examples are Neon and Krypton.