1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
3 years ago
7

Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based

at 0. Give your answer using summation notation, write out the first three non-zero terms, and give the interval on which the series converges. (If you need to enter [infinity], use the [infinity] button in CalcPad or type "infinity" in all lower-case.)
Mathematics
1 answer:
notsponge [240]3 years ago
6 0

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

You might be interested in
Which statement is true?
diamong [38]

3 is correct , base is never equal to 1 cause all of solves of logarithm will be 0

7 0
4 years ago
Read 2 more answers
A tv originally cost 400$ how much is the final cost of the tv if the sales tax is 8%
weeeeeb [17]

Multiply 400 by 8% and add it to 400:

400 x 0.08 = 32

400 + 32 = 432

Answer: $432

6 0
3 years ago
1. Find the slope of the line that passes through the points (-3, -5) and (3, 2).
Veseljchak [2.6K]
(-3, -5),  \ \  (3, 2)  \\ \\ Slope Formula : \\ \\ m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\ \\m=\frac{ 2-(-5)}{ 3-(-3)}\\\\ m=\frac{ 2+5}{ 3+3}\\\\m=\frac{7}{6}
7 0
3 years ago
Read 2 more answers
HELPPPPP MATCH the graph with the situation. I WILL GIVE BRAINLIEST!
netineya [11]

Answer:

1) c

2) D

3) H

Step-by-step explanation:

Just follow the graph as shown

8 0
3 years ago
15 points!
DerKrebs [107]
Y2 - y1              (-4,-6)    (2,6)
______              x1 y1    x2 y2

x2 - x1    



6,-(-6)
______

2, -(-4)

12/6 = 2
                                       
Finding the slope            
__________________________________

 mx + b

 2x + 2
would be the answer



5 0
3 years ago
Read 2 more answers
Other questions:
  • Renee is going to buy a new car that has a list price of $19,675. She will be responsible for $1,420 in vehicle registration fee
    10·1 answer
  • 8.
    6·1 answer
  • SOS will you help mee plz
    8·1 answer
  • Find the foci of each hyperbola graph the hyperbola y^2/400 - x^2/169 =1
    15·1 answer
  • For every $5 that Micah saves, his parents give him $10. If Micah saves $150, how much money will his parents give him?
    12·2 answers
  • Answer correctly please !! Will mark brainliest !!!
    15·1 answer
  • A yogurt shop offers seven different flavors of frozen yogurt and twelve different
    8·1 answer
  • Given that for all values of
    12·1 answer
  • Question 4 of 9
    12·1 answer
  • Plese help thank yous
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!