1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
2 years ago
7

Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based

at 0. Give your answer using summation notation, write out the first three non-zero terms, and give the interval on which the series converges. (If you need to enter [infinity], use the [infinity] button in CalcPad or type "infinity" in all lower-case.)
Mathematics
1 answer:
notsponge [240]2 years ago
6 0

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

You might be interested in
Evaluate the variable expression when a=-4, b=2, c=-3, and d =4. b-3a/bc^2-d​
gtnhenbr [62]

Answer:

Therefore, the variable expression when a=-4, b=2, c=-3, and d =4 is

\dfrac{b-3a}{bc^{2}-d}=1

Step-by-step explanation:

Evaluate:

\dfrac{b-3a}{bc^{2}-d}

When a=-4, b=2, c=-3, and d =4

Solution:

Substitute, a=-4, b=2, c=-3, and d =4 in above expression we get

\dfrac{b-3a}{bc^{2}-d}=\dfrac{2-3(-4)}{2(-3)^{2}-4}\\\\=\dfrac{2+12}{18-4}\\\\

\dfrac{b-3a}{bc^{2}-d}=\dfrac{14}{14}=1

Therefore, the variable expression when a=-4, b=2, c=-3, and d =4 is

\dfrac{b-3a}{bc^{2}-d}=1

6 0
3 years ago
What is sin(A)?<br> 13<br> 12<br> A<br> 5<br> sin(A) =
eimsori [14]

Answer:

sin A = 12/13

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

 sin theta = opposite side/ hypotenuse

sin A = 12/13

6 0
2 years ago
Please help!!!!!!!!!!
Sauron [17]

Answer:

I believe the first and last choice is correct.

~ hope I'm correct, if not I'm sorry~

Step-by-step explanation:

8 0
3 years ago
What is the multiplicative rate of change of the<br> function?
BartSMP [9]

Answer:

We know that the multiplicative rate of change of a function is the number by which each next term of an exponential function is increasing or decreasing. We can find multiplicative rate of change by dividing any term of the function by its previous term.

8 0
3 years ago
Identify the solution and graph of the given inequality.<br> 34 &gt; 3(2 − x)
Verizon [17]

Answer:

Solving the inequality we get x>-9.33

The graph is shown in figure attached.

Step-by-step explanation:

We need to solve the inequality: 34 > 3(2-x)

Solving:

34 > 3(2-x)\\

Switching the sides , reversing the inequality and  Multiply 3 with terms inside the bracket

3(2-x)

Subtract 6 from both sides

6-3x-6

Divide both sides by -3 and inequality will be reversed

\frac{-3x}{-3} >\frac{-28}{3} \\x>\frac{-28}{3}\\x>-9.33

Solving the inequality we get x>-9.33

The graph is shown in figure attached.

6 0
3 years ago
Other questions:
  • I Need help with 10 please
    6·2 answers
  • Which of the following situations calls for a hypothesis test about a population mean?
    10·1 answer
  • Between the time iko woke up and lunch time the temerature rose by 11°.Then by the time he went to bed ,the temperature dropped
    14·1 answer
  • 2/3x- 1/5 is greater than 1
    11·2 answers
  • Area and Triangles:Question 2
    10·1 answer
  • HELP PLEASE!! Identify the function shown in this graph. ​
    7·2 answers
  • The manufacturer of cans of salmon that are supposed to have a net weight of 6 ounces tells you that the net weight is actually
    6·1 answer
  • X^2/3 •5x =5x^5/3<br><br> Can someone explain how the exponent is 5/3?
    9·1 answer
  • 6 divided by 6 minus 4 times 3
    6·2 answers
  • The first three terms of a sequence are given. Round to the nearest thousandth (if
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!