1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
3 years ago
7

Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based

at 0. Give your answer using summation notation, write out the first three non-zero terms, and give the interval on which the series converges. (If you need to enter [infinity], use the [infinity] button in CalcPad or type "infinity" in all lower-case.)
Mathematics
1 answer:
notsponge [240]3 years ago
6 0

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

You might be interested in
20 time 1000 time 8898 time 2345 divided by 10
Artemon [7]
The answer is 41731620000
3 0
3 years ago
-45×68 what is the answer
Marianna [84]
Answer: -3060

68
-45
--------
340
272x <-- the x is in place of a zero
--------
3060

times the negative: -3060
4 0
3 years ago
The maximum amount you should pay toward housing costs each month in relation to your realized income is___?
lidiya [134]

Answer:

B.28%

Step-by-step explanation:

6 0
3 years ago
How can Help me<br> (a+b)^2≥4ab
sattari [20]

Mark as brainlist___________________________________

5 0
3 years ago
Read 2 more answers
1-2 sin e cos 20-2 sin 40 = cos (20)
natka813 [3]

Answer:

No this is not the same as cos(2Ф)

Step-by-step explanation:

First I changed the cos^{2}Ф into 1-sin^{2}Ф

I then foiled the (1-2sin^{2}Ф)(1-sin^{2}Ф) and that resulted in 1-sin^{2}Ф-2sin^{2}Ф+2sin^{4}Ф

From there, I then cancelled the two 2sin^{4}Ф and combined like terms and was left with 1-3sin^{2}Ф

Now 1-3sin^{2}Ф ≠ cos(2Ф)

8 0
4 years ago
Other questions:
  • What is the image of (-1, 1) after a dilation of 2?<br> O (1.3)<br> O (2.2)<br> O (-22)
    5·1 answer
  • I am just started doing trigonometry and I am already lost. Help?
    13·1 answer
  • Are the factors of number also the divisor
    11·1 answer
  • the area of a rectangular picture frame is 30 3/1 square inches. The length of the frame is 6 1/2 inches. Find the width of the
    14·1 answer
  • I NEED YOUR HELP PLEASE GRADES ARE DUE TODAY AND I DONT KNOW HOW TO DO THIS.​
    13·1 answer
  • Which equation shows that 9 is a factor of 72
    7·1 answer
  • When Deion was born, his grandfather gave him a 7.5-gram gold coin as a present. Today, Deion read in the newspaper that a gram
    6·1 answer
  • (3х + 4) - (х + 2) =​
    14·2 answers
  • Pls help <br> It due asap <br> Ydydbdbgdbs
    14·2 answers
  • Simplify: square root negative three and square root negative 27
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!