1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
3 years ago
7

Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based

at 0. Give your answer using summation notation, write out the first three non-zero terms, and give the interval on which the series converges. (If you need to enter [infinity], use the [infinity] button in CalcPad or type "infinity" in all lower-case.)
Mathematics
1 answer:
notsponge [240]3 years ago
6 0

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

You might be interested in
You want to build supports at each end of a table in the shape of a triangle. What type of triangle would you use to act as the
german

right angle because its always perpendicular to the floor

8 0
3 years ago
Match the decimal to its corresponding fraction. *
Charra [1.4K]

Answer:

1/3 = 0.333333

16/33 = 0.48484848

2/11 = 0.181818

1/12 = 0.0833333

127/999 = 0.127127127

Step-by-step explanation:

divde each fraction

5 0
3 years ago
Read 2 more answers
A pool measuring 8 meters by 28 meters is surrounded by a path of uniform​ width, as shown in the figure. If the area of the poo
Greeley [361]
28 because the wiishddbehehhe is wide enough
3 0
3 years ago
19. 140% of 60<br> find the percent of the number. Explain your method
KonstantinChe [14]

Answer:

84

Step-by-step explanation:

is                    x           140

----   SO ...    -------  =  --------

of                  60         100

(hit like pls)

60*140=100x

8400=100x

/100     /100

-------------------

   84 = x

8 0
2 years ago
Does this graph below represent a function? (Yes or no)
Whitepunk [10]

Answer:yes

Step-by-step explanation: it represents a function

4 0
2 years ago
Other questions:
  • 1) A farm has chickens and cows. You ask the farmer how many chickens he has, and how many cows he has. The farmer tells you he
    12·1 answer
  • if sarah is 24 years younger than her mother and if the sum of their ages is 68, how old is sarah what would x represent and x-2
    14·1 answer
  • Sum of 3/10 and 62/100
    7·1 answer
  • A German Shepard puppy weighs 9 pounds and is gaining 5 pounds each month. A Great Dane puppy weighs 11 pounds and is gaining 4
    8·2 answers
  • Is x greater than, less than, or equal to 151°
    5·2 answers
  • Which pair of functions are inverse of each other
    7·1 answer
  • A cell phone plan costs `\$200` to start. Then there is a `\$50` charge each month.
    9·1 answer
  • Whats 93, −76, 102, −101, 83, −48 least to greatest
    10·2 answers
  • I still need the area I provided my answer for perimeter if you need help! pls help me if u do I will give u brainliest
    9·1 answer
  • Nnnnnnnnnnnnnnnnnnnnnnn
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!