Answer:
The equation for the trend line would be y = -1/100x + 25
Step-by-step explanation:
In order to find the trend line, we first need to find the slope. To do so, we need to find two points on the line. The points we'll use are (0, 25) and (2500, 0). Next, we use the slope formula.
m(slope) = (y2 - y1)/(x2 - x1)
m = (0 - 25)/(2500 - 5)
m = -25/2500
m = -1/100
Now that we have this we can use the slope and the intercept in slope intercept form to model the trend line.
y = mx + b
y = -1/100x + 25
Answer:
-1
Step-by-step explanation:
Slope= rise/run
Since the line is decreasing, it will be negative.
Answer:
16x / 15
Step-by-step explanation:
2/5x + 2x/3
6x - 10x /15
16x / 15
Answer:
In the given figure the point on segment PQ is twice as from P as from Q is. What is the point? Ans is (2,1).
Step-by-step explanation:
There is really no need to use any quadratics or roots.
( Consider the same problem on the plain number line first. )
How do you find the number between 2 and 5 which is twice as far from 2 as from 5?
You take their difference, which is 3. Now splitting this distance by ratio 2:1 means the first distance is two thirds, the second is one third, so we get
4=2+23(5−2)
It works completely the same with geometric points (using vector operations), just linear interpolation: Call the result R, then
R=P+23(Q−P)
so in your case we get
R=(0,−1)+23(3,3)=(2,1)
Why does this work for 2D-distances as well, even if there seem to be roots involved? Because vector length behaves linearly after all! (meaning |t⋅a⃗ |=t|a⃗ | for any positive scalar t)
Edit: We'll try to divide a distance s into parts a and b such that a is twice as long as b. So it's a=2b and we get
s=a+b=2b+b=3b
⇔b=13s⇒a=23s