1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NNADVOKAT [17]
3 years ago
11

If you are given the endpoints of the diameter of a circle, which equatior

Mathematics
1 answer:
Assoli18 [71]3 years ago
6 0

Answer:

midpoint formula

Step-by-step explanation:

Given endpoints (x₁, y₁ ) and (x₂, y₂ ), then

midpoint = [\frac{1}{2} (x₁ + x₂ ), \frac{1}{2} (y₁ + y₂ ) ]

You might be interested in
Which is the endpoint of a ray r s t u
siniylev [52]

Answer:

u

Step-by-step explanation:

the endpoint will be the last one to the right

4 0
3 years ago
The graph shows the system of which two equations?<br> Watch the intervals.
Greeley [361]

Answer: the answer

Would be D

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Which equation is in slope-intercept form and represents a line with slope 0 through the point (2, 3)?
alexandr1967 [171]
I think it would be b) because you're given a slope of 0, so that leaves you with
y=0x+b
, resulting into this
y=b
You'd be just left with a continuous horizontal line going through the y-axis of 3 since you're passing the point (2,3), where 3 represents the y-value when your slope is at 0.
6 0
3 years ago
A(t)=.892t^3-13.5t^2+22.3t+579 how to solve this
Minchanka [31]

Answer:

t = (5 ((446 sqrt(3188516012553) - 827891226)^(1/3) - 204292 (-1)^(2/3) (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) + 1125/223 or t = 1125/223 - (5 ((-2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3) - 204292 (-3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or t = 1125/223 - (5 ((827891226 - 446 sqrt(3188516012553))^(1/3) + 204292 (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3))

Step-by-step explanation:

Solve for t over the real numbers:

0.892 t^3 - 13.5 t^2 + 22.3 t + 579 = 0

0.892 t^3 - 13.5 t^2 + 22.3 t + 579 = (223 t^3)/250 - (27 t^2)/2 + (223 t)/10 + 579:

(223 t^3)/250 - (27 t^2)/2 + (223 t)/10 + 579 = 0

Bring (223 t^3)/250 - (27 t^2)/2 + (223 t)/10 + 579 together using the common denominator 250:

1/250 (223 t^3 - 3375 t^2 + 5575 t + 144750) = 0

Multiply both sides by 250:

223 t^3 - 3375 t^2 + 5575 t + 144750 = 0

Eliminate the quadratic term by substituting x = t - 1125/223:

144750 + 5575 (x + 1125/223) - 3375 (x + 1125/223)^2 + 223 (x + 1125/223)^3 = 0

Expand out terms of the left hand side:

223 x^3 - (2553650 x)/223 + 5749244625/49729 = 0

Divide both sides by 223:

x^3 - (2553650 x)/49729 + 5749244625/11089567 = 0

Change coordinates by substituting x = y + λ/y, where λ is a constant value that will be determined later:

5749244625/11089567 - (2553650 (y + λ/y))/49729 + (y + λ/y)^3 = 0

Multiply both sides by y^3 and collect in terms of y:

y^6 + y^4 (3 λ - 2553650/49729) + (5749244625 y^3)/11089567 + y^2 (3 λ^2 - (2553650 λ)/49729) + λ^3 = 0

Substitute λ = 2553650/149187 and then z = y^3, yielding a quadratic equation in the variable z:

z^2 + (5749244625 z)/11089567 + 16652679340752125000/3320419398682203 = 0

Find the positive solution to the quadratic equation:

z = (125 (223 sqrt(3188516012553) - 413945613))/199612206

Substitute back for z = y^3:

y^3 = (125 (223 sqrt(3188516012553) - 413945613))/199612206

Taking cube roots gives (5 (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 2^(1/3) 3^(2/3)) times the third roots of unity:

y = (5 (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 2^(1/3) 3^(2/3)) or y = -(5 (-1/2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 3^(2/3)) or y = (5 (-1)^(2/3) (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 2^(1/3) 3^(2/3))

Substitute each value of y into x = y + 2553650/(149187 y):

x = (5 ((223 sqrt(3188516012553) - 413945613)/2)^(1/3))/(223 3^(2/3)) - 510730/223 (-1)^(2/3) (2/(3 (413945613 - 223 sqrt(3188516012553))))^(1/3) or x = 510730/223 ((-2)/(3 (413945613 - 223 sqrt(3188516012553))))^(1/3) - (5 ((-1)/2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 3^(2/3)) or x = (5 (-1)^(2/3) ((223 sqrt(3188516012553) - 413945613)/2)^(1/3))/(223 3^(2/3)) - 510730/223 (2/(3 (413945613 - 223 sqrt(3188516012553))))^(1/3)

Bring each solution to a common denominator and simplify:

x = (5 ((446 sqrt(3188516012553) - 827891226)^(1/3) - 204292 (-1)^(2/3) (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or x = -(5 ((-2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3) - 204292 ((-3)/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or x = -(5 ((827891226 - 446 sqrt(3188516012553))^(1/3) + 204292 (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3))

Substitute back for t = x + 1125/223:

Answer: t = (5 ((446 sqrt(3188516012553) - 827891226)^(1/3) - 204292 (-1)^(2/3) (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) + 1125/223 or t = 1125/223 - (5 ((-2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3) - 204292 (-3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or t = 1125/223 - (5 ((827891226 - 446 sqrt(3188516012553))^(1/3) + 204292 (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3))

6 0
3 years ago
Which expression could be used to find the combined area of the right and left faces of the prism
erastovalidia [21]

Answer:

3'2+3'2

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • There are 4 semi-trailer trucks parked in a line at the rest stop. After the first truck, each truck in the line weighs 2 tons m
    5·2 answers
  • A scanner scanned 56 photos in 7 minutes. If it scans photos at a constant rate, it can scan _____ photos in 27 minutes HELP ASA
    10·1 answer
  • Given x : y: z = 5:1:3 and z - y = 28. find the value of x + y​
    9·1 answer
  • 1) Which expression represents the expression: "seven less than a number"?
    5·1 answer
  • X2 - 12x - 28<br> What is the factor
    15·2 answers
  • Graph the line with slope 3 and intercept 1 X​
    11·1 answer
  • Two parallel lines lines are cut by a transversal. Which angles are equal to angle 1?
    12·1 answer
  • Devaughn is 13 years younger than Sydney. The sum of their ages is 79 . What is Sydney's age?
    9·1 answer
  • What is the hypothenus of a triangle with the sides x,7,and 11.
    8·1 answer
  • Factor the following expression. Simplify your answer.<br> 3s(s - 1)^1/3 + 2(s - 1)^4/3
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!