The interval of the convergence is x < -3 or x > 3 if the series n 3^n/x^n goes infinitely.
<h3>What is convergent of a series?</h3>
A series is convergent  if the series of its partial sums approaches a limit; that really is, when the values are added one after the other in the order defined by the numbers, the partial sums getting closer and closer to a certain number.
We can find the interval for the convergent by root test.
Like the Ratio Test, the root Test is used to determine absolute convergence (or not) with factorials, the ratio test is useful.
For the given series:

As the series goes infinitely, we can use root test.
By the root test, the convergence interval will be;
The interval of convergence is:
x < -3 or x > 3   we can write this as:
|x| < 3
Thus, the interval of the convergence is x < -3 or x > 3 if the series n 3^n/x^n goes infinitely.
Learn more about the convergent of a series here:
brainly.com/question/15415793
#SPJ4
 
        
             
        
        
        
Answer:
I can’t see the picture well please make it more detailed 
Step-by-step explanation:
 
        
                    
             
        
        
        
Your answer is D. All of these statements are true.
        
             
        
        
        
Answer: The third one
Step-by-step explanation: I just did the question on edge. ,and I got it right.
 
        
             
        
        
        
Answer:
Option a.
Step-by-step explanation:
In the given triangle angle A is a right angle so triangle ABC is a right angled triangle.
Opposite side of right angle is hypotenuse. So, CB is hypotenuse.
From figure it is clear that CA is shorter that segment BA.
All angles are congruent to itself. So angle C is congruent to itself.
We know that, if an altitude is drawn from the right angle vertex in a right angle triangle it divide the triangle in two right angle triangles, then given triangle is similar to both new triangles.
So, triangle ABC is similar to triangle DBA if segment AD is an altitude of triangle ABC.
Therefore, the correct option is a.