Answer:
The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be transferred from one system to another, but the total remains the same.
Could you please help me with the two most recent questions of mine on my page? I will give u brainliest and 20 points! :))) X
Answer:
We need 8.11 grams of glucose for this solution
Explanation:
Step 1: Data given
Molarity of the glucose solution = 0.300 M
Total volume = 0.150 L
The molecular weight of glucose = 180.16 g/mol
Step 2: Calculate moles of glucose in the solution
Moles glucose = molarity solution * volume
Moles glucose = 0.300 M * 0.150 L
Moles glucose = 0.045 moles glucose
Step 3: Calculate mass of glucose
MAss glucose = moles glucose* molecular weight of glucose
MAss glucose = 0.045 moles * 180.16 g/mol
MAss glucose = 8.11 grams
We need 8.11 grams of glucose for this solution
Atomic mass Boron ( B ) = 10.811 u.m.a
10.811 g -------------- 6.02x10²³ atoms
5.40 g ----------------- ?? atoms
5.40 x ( 6.02x10²³) / 10.811 =
3.0069x10²³ atoms
Since Na has a 1+ charge and O has a -2 charge, by reversing the charges and placing them as subscripts for the other atoms the formula is Na2O1 or simply Na2O.
Answer: 70.0°C
Explanation:
Quantity of heat = Mass * Specific heat * Change in temperature
Quantity of heat = 104.6 KJ
Mass = 500.0 g
Specific heat of water is 4.18 J/g°C
Change in temperature assuming final temperature is x = x - 20
Units should be in grams and joules:
104,600 = 500 * 4.18 * (x - 20)
104,600 = 2,090 * (x - 20)
x - 20 = 104,600/2,090
x = 104,600/2,090 + 20
x = 69.8
= 70.0°C