The mass of magnesium in
atoms is 240 g.
Answer: Option A
<u>Explanation:</u>
First, we have to convert the atoms to moles of magnesium.
We know that
atoms are present in 1 mole of magnesium. So,


Thus,


Thus, 240 g of Magnesium is present in
atoms.
25 drops of acid is required to neutralize the 50.0 ml of 0.010m of NaOH in the experiment.
The equation of the reaction is;
NaOH(aq) + HCl(aq) ---------> NaCl(aq) + H2O(l)
We can use the titration formula;
CAVA/CBVB = NA/NB
CA= concentration of acid
VA = volume of acid
CB = concentration of base
VB = volume of base
NA = number of moles of acid
NB = number of moles of base
CB = 0.010 M
VB = 50.0 ml
CA = 0.50 M
VA = ?
NA = 1
NB = 1
Substituting values;
CAVANB = CBVBNA
VA = 0.010 × 50.0 × 1/ 0.50 × 1
VA = 1 ml
Since the total volume of acid used is 1 ml and each drop contains 0.040 ml
The number of drops required is 1ml/0.040 ml = 25 drops
Learn more: brainly.com/question/1527403
The correct answer would be the first option. The arrows 1, 2 and 3 represent the phase transitions where heat energy is gained. As heat energy is gained the kinetic energy of the molecules in a substance is increased which would cause them to change phases from solid to liquid and to gas.
Answer:

Explanation:
Hello!
In this case, according to the chemical reaction:

We can evidence the 2:1 mole ratio between hydrogen and tin, thus, we perform the following stoichiometric setup to obtain the mass of produced tin:

Best regards!