Yes how about you luv? how’s ur day going
From the balanced equation:
<span>1mol C3H8 requires 5mol O2 for combustion </span>
<span>Molar mass C3H8 = 44g/mol </span>
<span>8.8g C3H8 = 8.8/44 = 0.2mol C3H8 </span>
<span>This will require 5*0.2 = 1.0mol O2 </span>
<span>Molar mass O2 = 32g/mol </span>
<span>Therefore 32g of O2 required.
</span>
The most reasonable way to measure absolute zero would have been to extrapolate the ideal gas law.
<h3>What is Absolute zero?</h3>
This is referred to the temperature at which a thermodynamic system has the lowest form of energy.
Guillaume Amontons used gas equation to prove that absence of heat was theoretically possible which would have involved only extrapolating the ideal gas law.
Read more about Absolute zero here brainly.com/question/18560146
#SPJ1
Answer:
Option D is correct.
The concentrations of both PCl₅ and PCl₃ are changing at equilibrium
Explanation:
Chemical equilibrium during a reversible chemical reaction, is characterised by an equal rate of forward reaction and backward reaction. It is better described as dynamic equilibrium.
This is because, the concentration of the elements and compounds involved in the reversible chemical reaction at equilibrium changes, but the rate of change of the reactants is always equal to the rate of change of products.
Hence, the concentration of reactants and products, such as PCl₅ and PCl₃ are allowed to change at equilibrium, but alas, the rate of forward reaction must always match the rate of backward reaction for the process to remain in a state of Chemical equilibrium.
Hope this Helps!!!
Gay-Lussac's law gives the relationship between pressure and temperature of a gas.
it states that for a fixed amount of gas of constant volume pressure is directly proportional to temperature.
P/T = k
where P - pressure, T - temperature and k - constant

where parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation.
temperature should be in the kelvin scale,
T1 = 22 °C + 273 = 295 K
substituting the values in the equation

T = 492 K
new temperature - 492 - 273 = 219 °C