Considering there is a function (relationship) and that it is linear, the distance will change proportionally to time constantly. In other words, we are taking the speed to be constant throughout the journey.
If we let:
t = time (min's) driving
d = distance (miles) from destination
Then we can represent the above information as:
t = 40: d = 59
t = 52: d = 50
If we think of this as a graph, we can think of the x-axis representing time and the y-axis representing the distance to the destination. Being linear, the function will be a line, i.e. it will have a constant gradient. If you were plot the two points inferred from the information and connect the two dots, you will get a declining line (one with a negative gradient) representing the inversely proportional relationship or equally, the negative correlation between the time driving and the distance to the destination. The equation of this line will be the linear function that relates time and the distance to the destination. To find this linear function, we do as follows:
Find the gradient (m) of the line:
m = Δy/Δx
In this case, the x-values are t-values and our y-values are d-values, so:
Δy = Δd
= 50 - 59
= -9
Δx = Δt
= 52 - 40
= 12
m = -9/12 = -3/4
Note: m is equivalent to speed with units: d/t
Use formula to find function and rearrange to give it in the desired format:
y - y₁ = m(x - x₁)
d - 50 = -3/4(t - 52)
4d - 200 = -3t + 156
4d + 3t - 356 = 0
Let t = 70 to find d at the time:
4d + 3(70) - 356 = 0
4d + 210 - 356 = 0
4d - 146 = 0
4d = 146
d = 73/2 = 36.5 miles
So after 70 min's of driving, Dale will be 36.5 miles from his destination.
9514 1404 393
Answer:
- 13 ft
- (a) 1 second; (b) t = 0, t = 1/2
Step-by-step explanation:
<h3>1. </h3>
Let w represent the length of the wire. Then the height of attachment is (w-1). The Pythagorean theorem tells us a relevant relation is ...
5² +(w -1)² = w²
w² -2w +26 = w² . . . . . . . eliminate parentheses, collect terms
26 = 2w . . . . . . . . . . . . add 2w
13 = w . . . . . . . . . . . . divide by 2
The length of the wire is 13 feet.
__
<h3>2. </h3>
(a) When h = 0, the equation is ...
0 = -16t^2 +8t +8
Dividing by -8 puts this into standard form:
2t^2 -t -1 = 0
Factoring, we get ...
(2t +1)(t -1) = 0
The positive value of t that makes a factor zero is t = 1.
It will take 1 second for the gymnast to reach the ground.
__
(b) When h = 8, the equation is ...
8 = -16t^2 +8t +8
Subtract 8 and divide by 8 to get ...
0 = -2t^2 +t
0 = t(1 -2t) . . . . factor out t
Values of t that make the factors zero are ...
t = 0
t = 1/2
The gymnast will be 8 feet above the ground at the start of the dismount, and 1/2 second later.
It's important to know that rigid transformations don't change the size or shape, this means the corresponding angles between the image and preimage are congruent. Due to the reflection transformation, angle C corresponds to angle Z.
<h2>Therefore, the answer is angle Z.</h2>