Answer:
V₂ =279.9 cm³
Explanation:
Given data:
Initial volume = 360 cm³
Initial temperature = 50°C
Initial pressure = 700 mmHg
Final volume = ?
Final temperature = 273 k
Final pressure = 1 atm
Solution:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Solution:
<em>We will convert the mmHg to atm.</em>
700/760 = 0.92 atm
<em>and °C to kelvin.</em>
50+273 = 323 K
P₁V₁/T₁ = P₂V₂/T₂
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 0.92 atm × 360 cm³ × 273 K / 323 K ×1 atm
V₂ = 290417.6 atm .cm³. K / 323 k. atm
V₂ =279.9 cm³
Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.
The volume of a gas is the same as its CONTAINER.
Gases generally has no shape and no definite volume. When a gas is placed in a container, the gas usually takes the shape and the volume of the container, that is, the gas fills up all the available spaces in the container. Thus, the volume of a gas will always be the same as its container. This is in contrast with solids, which have definite shape and volume and liquids, which have definite volume but no fixed shape.
Answer:
The answer is A
Explanation:
Image A has the same species while image B has more species than A.