Answer: D) cube root of 16
================================================
Explanation:
The rule we use is
![x^{m/n} = \sqrt[n]{x^m}](https://tex.z-dn.net/?f=x%5E%7Bm%2Fn%7D%20%3D%20%5Csqrt%5Bn%5D%7Bx%5Em%7D)
In this case, x = 4, m = 2 and n = 3.
So,
![x^{m/n} = \sqrt[n]{x^m}\\\\\\4^{2/3} = \sqrt[3]{4^2}\\\\\\4^{2/3} = \sqrt[3]{16}\\\\\\](https://tex.z-dn.net/?f=x%5E%7Bm%2Fn%7D%20%3D%20%5Csqrt%5Bn%5D%7Bx%5Em%7D%5C%5C%5C%5C%5C%5C4%5E%7B2%2F3%7D%20%3D%20%5Csqrt%5B3%5D%7B4%5E2%7D%5C%5C%5C%5C%5C%5C4%5E%7B2%2F3%7D%20%3D%20%5Csqrt%5B3%5D%7B16%7D%5C%5C%5C%5C%5C%5C)
Showing that the original expression turns into the cube root of 16.
Answer:
please do the math luke a lesson and the beta is very weird so you want to do something about that so i suggest that you do 300.
Answer:
the answer is 1350
Step-by-step explanation:
add 450 together three times or multiply by 3
450 x 3 = 1350
Next time, please share the answer choices.
Starting from scratch, it's possible to find the roots:
<span>4x^2=x^3+2x should be rearranged in descending order by powers of x:
x^3 - 4x^2 + 2x = 0. Factoring out x: </span>x(x^2 - 4x + 2) = 0
Clearly, one root is 0. We must now find the roots of (x^2 - 4x + 2):
Here we could learn a lot by graphing. The graph of y = x^2 - 4x + 2 never touches the x-axis, which tells us that (x^2 - 4x + 2) = 0 has no real roots other than x=0. You could also apply the quadratic formula here; if you do, you'll find that the discriminant is negative, meaning that you have two complex, unequal roots.