Answer:
360 combinations
Step-by-step explanation:
To calculate the number of different combinations of 2 different flavors, 1 topping, and 1 cone, we are going to use the rule of multiplication as:
<u> 6 </u>* <u> 5 </u> * <u> 4 </u>* <u> 3 </u>= 360
1st flavor 2nd flavor topping cone
Because first, we have 6 possible options for the flavor, then we only have 5 possible options for the 2nd flavor. Then, we have 4 options for the topping and finally, we have 3 options for the cone.
It means that there are 360 different combinations of two different flavors, one topping, and one cone are possible
The answer is 15 because I checked it with Socratic
Answer:
x = 5
Step-by-step explanation:
12x - 6 + 6 = 54 + 6
12x = 60
12/12 = 60/12
X = 5
Answer:
≈50.6
Step-by-step explanation:
Not sure what precision level this problem is looking for, but for right-skewed distributions, we know that the mean is going to be pulled right and therefore the mean should be larger than the median. To a high confidence level, the mean should fall between 50 and 59, or in the third column.
If a single estimation is wanted, assume the values inside each column are uniformly distributed:
