129.99*0.13
129.99-16.90
113.09*0.05
5.65+113.09
118.74
The statements true about the the function f(x) = 2x2 – x – 6 are-
- The vertex of the function is (one-quarter, negative 6 and one-eighth).
- The function has two x-intercepts.
<h3>What is vertex of parabola?</h3>
The vertex of parabola is the point at the intersection of parabola and its line of symmetry.
Now the given function is,
f(x) = 2x^2 – x – 6
Also, it is given that the vertex is located at (0.25, -6) and the parabola opens up, the function has two x-intercepts.
Comparing the given function with standard form,
f(x) = a x^2 bx + c
By comprison we get,
a = 2
b = -1
c = -6
Now, x-coordinate of vertex is given as,
x = -b/2a
put the values we get,
x = -(-1)/2*2
or, x = 1/4
Put the value of x in given function, so y-coordinate of the vertex is given as,
f(1/4) = 2(1/4)² - 1/4 - 6
= -49/6
= -6 1/8
Hence, The statements true about the the function f(x) = 2x2 – x – 6 are-
- The vertex of the function is (one-quarter, negative 6 and one-eighth).
- The function has two x-intercepts.
More about vertex :
brainly.com/question/86393
#SPJ1
Answer:
fncbcghdhdgdgdnf thats your answer
Step-by-step explanation:
Question options :
a. They should be between 64 and 76 inches tall.
b. They should be close to the height that is 95% of the mean. That is, 66.5 inches, plus or minus 2 standard deviations.
c. They should be at or below the 95th percentile, which is 74.92 inches.
d. None of the above.
Answer: a. They should be between 64 and 76 inches tall.
Step-by-step explanation:
Given the following :
Assume men's height follow a normal curve ; and :
Mean height = 70 inches
Standard deviation= 3 inches
According to the empirical rule ;
Assuming a normal distribution with x being random variables ;
About 68% of x-values lie between -1 to 1 standard deviation of the mean. With about 95% of the x values lying between - 2 and +2 standard deviation of mean. With 99.7% falling between - 3 to 3 standard deviations from the mean.
Using the empirical rule :
95% will fall between + or - 2 standard deviation of the mean.
Lower limit = - 2(3) = - 6
Upper limit = 2(3) = 6
(-6+mean) and (+6+ mean)
(-6 + 70) and (6+70)
64 and 76