Answer:
The probability that there are 2 or more fraudulent online retail orders in the sample is 0.483.
Step-by-step explanation:
We can model this with a binomial random variable, with sample size n=20 and probability of success p=0.08.
The probability of k online retail orders that turn out to be fraudulent in the sample is:

We have to calculate the probability that 2 or more online retail orders that turn out to be fraudulent. This can be calculated as:
![P(x\geq2)=1-[P(x=0)+P(x=1)]\\\\\\P(x=0)=\dbinom{20}{0}\cdot0.08^{0}\cdot0.92^{20}=1\cdot1\cdot0.189=0.189\\\\\\P(x=1)=\dbinom{20}{1}\cdot0.08^{1}\cdot0.92^{19}=20\cdot0.08\cdot0.205=0.328\\\\\\\\P(x\geq2)=1-[0.189+0.328]\\\\P(x\geq2)=1-0.517=0.483](https://tex.z-dn.net/?f=P%28x%5Cgeq2%29%3D1-%5BP%28x%3D0%29%2BP%28x%3D1%29%5D%5C%5C%5C%5C%5C%5CP%28x%3D0%29%3D%5Cdbinom%7B20%7D%7B0%7D%5Ccdot0.08%5E%7B0%7D%5Ccdot0.92%5E%7B20%7D%3D1%5Ccdot1%5Ccdot0.189%3D0.189%5C%5C%5C%5C%5C%5CP%28x%3D1%29%3D%5Cdbinom%7B20%7D%7B1%7D%5Ccdot0.08%5E%7B1%7D%5Ccdot0.92%5E%7B19%7D%3D20%5Ccdot0.08%5Ccdot0.205%3D0.328%5C%5C%5C%5C%5C%5C%5C%5CP%28x%5Cgeq2%29%3D1-%5B0.189%2B0.328%5D%5C%5C%5C%5CP%28x%5Cgeq2%29%3D1-0.517%3D0.483)
The probability that there are 2 or more fraudulent online retail orders in the sample is 0.483.
I think the answer is 17 because the pattern adds 4 then takes away 1 so 14-1=13 13+4=17
<span>For more difficult cases, it may be easier to draw the graph first using the domain if possible and then determine the range graphically.See if you can find the inverse function. The domain of a function's inverse function is equal to that function's range.<span>Check to see if the function repeats.</span></span>
Diameter = 7 cm
radius = 7÷2 = 3.5
Volume of cone = 1/3

Volume of cone = 1/3

= 115 cubic inches (Answer B)