Answer: (f-g)(x) is equivalent to f(x) - g(x)
So that would be (2x²-5) - (x²-4x-8) = 2x² - x² + 4x + 8 - 5 = x² + 4x + 3
Hope this helps.
L=W+12
2L+2W=48
2(W+12)+2W=48
2W+24+2W=48
4W=48-24
4W=24
W=24/4
W=6 ANS. FOR THE WIDTH.
L=6+12=18 ANS. FOR THE LENGTH.
PROOF:
2*18+2*6=48
36+12=48
48=48
Hope this helps:)
To determine the length of AB, one must subtract BC from AC. If the length of AC is 18 and the length of BC is 4, then using this formula yields 18 - 4 = 14, so the length of AB is 14.
This postulate also allows a line segment that has only two known points to be broken into two line segments with the addition of a third point in between the endpoints. This is useful for proofs in geometry and analysis.
The answer should be
_
.16
Answer:
<em>l = w + 3cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm </em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 </em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:l = (13cm) + 3cm = 16cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:l = (13cm) + 3cm = 16cmStep-by-step explanation:</em>
I hope this helps you.