it is non-linear, because to get 8 to 24 takes 16 but 0 to 8 only takes 8 (i'm not good at explaining)
No, because with the parentheses, you distribute the 2 to both the x and the 5, making that equation 2x-10
Answer:
8/11
Step-by-step explanation:
5+3=8
The volume of the composite figure is the third option 385.17 cubic centimeters.
Step-by-step explanation:
Step 1:
The composite figure consists of a cone and a half-sphere on top.
We will have to calculate the volumes of the cone and the half-sphere separately and then add them to obtain the total volume.
Step 2:
The volume of a cone is determined by multiplying
with π, the square of the radius (r²) and height (h). Here we substitute π as 3.1415.
The radius is 4 cm and the height is 15 cm.
The volume of the cone :
cubic cm.
Step 3:
The area of a half-sphere is half of a full sphere.
The volume of a sphere is given by multiplying
with π and the cube of the radius (r³).
Here the radius is 4 cm. We take π as 3.1415.
The volume of a full sphere
cubic cm.
The volume of the half-sphere
cubic cm.
Step 4:
The total volume = The volume of the cone + The volume of the half sphere,
The total volume
cub cm. This is closest to the third option 385.17 cubic centimeters.
Answer:
Step-by-step explanation:
The formula for the dot product of vectors is
u·v = |u||v|cosθ
where |u| and |v| are the magnitudes (lengths) of the vectors. The formula for that is the same as Pythagorean's Theorem.
which is 
which is 
I am assuming by looking at the above that you can determine where the numbers under the square root signs came from. It's pretty apparent.
We also need the angle, which of course has its own formula.
where uv has ITS own formula:
uv = (14 * 3) + (9 * 6) which is taking the numbers in the i positions in the first set of parenthesis and adding their product to the product of the numbers in the j positions.
uv = 96.
To get the denominator, multiply the lengths of the vectors together. Then take the inverse cosine of the whole mess:
which returns an angle measure of 30.7. Plugging that all into the dot product formula:
gives you a dot product of 96