Answer:
Suppose,
(C - A) ∩ (B - A) ≠ ∅
Let x is an element of (C - A) ∩ (B - A),
That is, x ∈ (C - A) ∩ (B - A),
⇒ x ∈ C - A and x ∈ B - A
⇒ x ∈ C, x ∉ A and x ∈ B, x ∉ A
⇒ x ∈ B ∩ C and x ∉ A
⇒ B ∩ C ⊄ A
But we have given,
B ∩ C ⊂ A
Therefore, our assumption is wrong,
And, there is no common elements in (C - A) and (B-A),
That is, (C - A) ∩ (B - A) = ∅
Hence proved...
Answer:
A
Step-by-step explanation:
consider the form g(x) = aX^2, where a is negative, means the curve is flip upside down.
-3, shifted down for 3 units.