Answer:
PQ = 1/2BC
Step-by-step explanation:
Answer: D
Tracing
Step-by-step explanation:
Sir Arthur Conan Doyle, author of the Sherlock Holmes stories, was credited as an influence to forensic science due to his character's use of methods such as fingerprints, serology, ciphers, trace evidence, and footprints long before they were commonly used by actual British and American police forces.
Step-by-step explanation:
I am not sure what your problem here is.
you understand the inequality signs ?
anyway, to get
6×f(-2) + 3×g(1)
we can calculate every part of the expression separately, and then combine all the results into one final result.
f(-2)
we look at the definition.
into what category is -2 falling ? the one with x<-2, or the one with x>=-2 ?
is -2 < -2 ? no.
is -2 >= -2 ? yes, because -2 = -2. therefore, it is also >= -2.
so, we have to use
1/3 x³
for x = -2 that is
1/3 × (-2)³ = 1/3 × -8 = -8/3
g(1)
again, we look at the definition.
into what category is 1 falling ? the one with x > 2 ? or the one with x <= 1 ?
is 1 > 2 ? no.
is 1 <= 1 ? yes, because 1=1. therefore it is also <= 1.
so we have to use
2×|x - 1| + 3
for x = 1 we get
2×0 + 3 = 3
6×f(-2) = 6 × -8/3 = 2× -8 = -16
3×g(1) = 3× 3 = 9
and so in total we get
6×f(-2) + 3×g(1) = -16 + 9 = -7
<h3>
Answer: 680 different combinations</h3>
=======================================================
Explanation:
If order mattered, then we'd have 17*16*15 = 4080 different permutations. Notice how I started with 17 and counted down 1 at a a time until I had 3 slots to fill. We count down by 1 because each time we pick someone, we can't pick them again.
So we have 4080 different ways to pick 3 people if order mattered. But again order doesn't matter. All that counts is the group itself rather than the individual or how they rank. There are 3*2*1 = 6 ways to order any group of three people, which means there are 4080/6 = 680 different combinations possible.
An alternative is to use the nCr formula with n = 17 and r = 3. That formula is

where the exclamation marks indicate factorials