Answer:
Hope this solution helps you

- Given - <u>an </u><u>equation</u><u> </u><u>in </u><u>a </u><u>standard</u><u> </u><u>form</u>
- To do - <u>simplify</u><u> </u><u>the </u><u>equation</u><u> </u><u>so </u><u>as </u><u>to </u><u>obtain </u><u>an </u><u>easier </u><u>one</u>
<u>Since </u><u>the </u><u>equation</u><u> </u><u>provided </u><u>isn't</u><u> </u><u>i</u><u>n</u><u> </u><u>it's</u><u> </u><u>general</u><u> </u><u>form </u><u>,</u><u> </u><u>let's</u><u> </u><u>first </u><u>convert </u><u>it </u><u>~</u>
<u>General</u><u> </u><u>form </u><u>of </u><u>a </u><u>Linear</u><u> equation</u><u> </u><u>-</u>

<u>T</u><u>he </u><u>equation</u><u> </u><u>after </u><u>getting</u><u> </u><u>converted</u><u> </u><u>will </u><u>be </u><u>as </u><u>follows</u><u> </u><u>~</u>

hope helpful ~
Answer:
2.28%
Step-by-step explanation:
Mr. bowens test is normally distributed with a mean (μ) of 75 and a standard deviation (σ) of 3 points.
The z score is used in probability to show how many standard deviation is a raw score below or above the mean. The formula for the z score (z) is given by:

For a raw score (x) of 81 points, the z score can be calculated by:

Therefore from the normal probability distribution table, the probability that a randomly selected score is greater than 81 can be given as:
P(x > 81) = P(z > 2) = 1 - P(z < 2) = 1 - 0.9772 = 0.0228 = 2.28%
Answer:
f(1)=4
Step-by-step explanation:
f(1)=3(1)^4-(1)^2+4(1)-2
f(1)=3(1)-1+4-2
f(1)=3-1+4-2
f(1)=4