<u>Answer:</u> The number of electrons in given amount of silver are 
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

We are given:
Given mass of silver = 7.1 g
Molar mass of silver = 107.87 g/mol
Putting values in above equation, we get:

Number of electrons in 1 atom of silver = 47
According to mole concept:
1 mole of an element contains
number of particles
So, 0.066 moles of silver will contain = -
number of electrons
Hence, the number of electrons in given amount of silver are 
Answer:
What are some ways we can improve on our land use?
- Avoid deforestation and close the forest frontier.
The first-order priority is to end deforestation by closing the "forest frontier" or intact forests, to development.
- Increase agricultural productivity.
- Restore forests and landscapes.
- Reduce food loss and waste.
- Improve diets
Following the initial 4.0 seconds of travel, the cart moved 32m.
<h3>What is an equation of motion?</h3>
Physicists use equations of motion to describe how a physical system behaves in terms of how its motion changes over time.
The behavior of a physical system is described by the equations of motion in more detail as a collection of mathematical functions expressed in terms of dynamic variables. These variables typically comprise time and spatial coordinates, but they could also have momentum components. The most flexible option is generalized coordinates, which can be any useful variable that is a component of the physical system. In classical mechanics, the functions are defined in a Euclidean space, while curved spaces are used in relativity instead. The equations are the answers to the differential equations describing the motion of the dynamics of the dynamics of a system are known. The amount of motion changes according to the strength of the force and does so in the direction of the force's applied straight line.
To know more about equations of motion, click here:
brainly.com/question/14355103
#SPJ4
Answer:
D.
Explanation:
To solve the exercise it is necessary to apply the concepts related to the Magnetic Field described by Faraday.
The magnetic field is given by the equation:

Where,
Permeability constant
d = diameter
I = Current
For the given problem we have a change in the diameter, twice that of the initial experiment, therefore we define that:


The ratio of change between the two is given by:




Therefore the correct answer is D.