you can subtract the atomic number from the mass number to find the number of neutrons.
Answer:
Explanation:
Mass of ice m = 500g = .5 kg
Heat required to raise the temperature of ice by 10 degree
= mass of ice x specific heat of ice x change in temperature
= .5 x 2093 x 10 J
10465 J
Heat required to melt the ice
= mass of ice x latent heat
0.5 x 334 x 10³ J
167000 J
Heat required to raise its temperature to 18 degree
= mass x specific heat of water x rise in temperature
= .5 x 4182 x 18
=37638 J
Total heat
=10465 +167000+ 37638
=215103 J
Answer:
a. wavelength of the sound, 
b. observed frequecy, 
Given:
speed of sound source,
= 80 m/s
speed of sound in air or vacuum,
= 343 m/s
speed of sound observed,
= 0 m/s
Solution:
From the relation:
v =
(1)
where
v = velocity of sound
= observed frequency of sound
= wavelength
(a) The wavelength of the sound between source and the listener is given by:
(2)
(b) The observed frequency is given by:


(3)
Using eqn (2) and (3):


Answer:
0.23 J
Explanation:
k*(36 - 28) = 23
so k = 23/8 N/cm
W = k(32 - 28)²/2 = 23/8 * 4²/2 = 23 N-cm = 0.23 J
For the first question, you got them right, for the two you left blank, initial(beginning) velocity: 2 m/s the final velocity is: 12 m/s