You have to take a better picture
Answer:
Point (1,8)
Step-by-step explanation:
We will use segment formula to find the coordinates of point that will partition our line segment PQ in a ratio 3:1.
When a point divides any segment internally in the ratio m:n, the formula is:
![[x=\frac{mx_2+nx_1}{m+n},y= \frac{my_2+ny_1}{m+n}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2Cy%3D%20%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5D)
Let us substitute coordinates of point P and Q as:
,




![[x=\frac{4}{4},y=\frac{32}{4}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B4%7D%7B4%7D%2Cy%3D%5Cfrac%7B32%7D%7B4%7D%5D)
Therefore, point (1,8) will partition the directed line segment PQ in a ratio 3:1.
If we write y=f(x)=(x-h)²+k, then y-k=(x-h)². This is vertex form where the vertex is (h,k)=(3,3) so h and k are both 3. We can see this if we put x=3 in the shifted function. This is a minimum point for the function because for every other x f(x) is greater then 3. The minimum point is the vertex.
Answer : 0.6
hope this helps !! ^-^
Answer:
lol
Step-by-step explanation:
it d