Answers:
When we evaluate a logarithm, we are finding the exponent, or <u> power </u> x, that the <u> base </u> b, needs to be raised so that it equals the <u> argument </u> m. The power is also known as the exponent.

The value of b must be <u> positive </u> and not equal to <u> 1 </u>
The value of m must be <u> positive </u>
If 0 < m < 1, then x < 0
A <u> logarithmic </u> <u> equation </u> is an equation with a variable that includes one or more logarithms.
===============================================
Explanation:
Logarithms, or log for short, basically undo what exponents do.
When going from
to
, we have isolated the exponent.
More generally, we have
turn into 
When using the change of base formula, notice how

If b = 1, then log(b) = log(1) = 0, meaning we have a division by zero error. So this is why 
We need b > 0 as well because the domain of y = log(x) is the set of positive real numbers. So this is why m > 0 also.
Answer:
1,100
Step-by-step explanation:
Not a function because of the vertical line test.
Domain is [-2,∞] since the left most point is -2 and the right is unbounded.
Range is (-∞,∞) since it is not bounded in terms of y.
Answer:
<u>4-0</u>
3-0
=4/3
<u>y-0</u> =4/3
x-0
3y-0=4x-0
3y=4x
y=4/3x
Step-by-step explanation: