Answer:
0.961
Step-by-step explanation:
To answer this, find the area under the standard normal curve to the left of 130 pounds:
Using the function normalcdf( on a TI calculator, we get:
normalcdf(-1000, 130, 100, 17) = 0.961
Do L times W times H or length width and height hope this helps
Answer:
(a): <u>x</u><u> </u><u>is</u><u> </u><u>3</u><u> </u><u>and</u><u> </u><u>ky</u><u> </u><u>is</u><u> </u><u>-</u><u>1</u>
<u>(</u><u>b</u><u>)</u><u>:</u><u> </u><u>k</u><u> </u><u>is</u><u> </u><u>-</u><u>2</u>
Step-by-step explanation:
Let: 3x + ky = 8 be <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>a</em><em>)</em>
x - 2 ky = 5 be <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>b</em><em>)</em>
<em> </em>Then multiply <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>a</em><em>)</em><em> </em>by 2:
→ 6x + 2ky = 16, let it be <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>c</em><em>)</em>
Then <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>c</em><em>)</em><em> </em><em>+</em><em> </em><em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>b</em><em>)</em><em>:</em>
<em>
</em>
<em>T</em><em>h</em><em>e</em><em>n</em><em> </em><em>k</em><em>y</em><em> </em><em>:</em>


Answer:
26
Step-by-step explanation:
Fitst, you substitute
f(2) = 3(2) + 20
f(2) = 6 + 20
f(2) = 26
your answer is 26