1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maw [93]
3 years ago
6

A+b=180 A=-2x+115 B=-6x+169 What is the value of B?

Mathematics
1 answer:
natulia [17]3 years ago
6 0
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
You might be interested in
Which of the following scenarios is least likely to be modeled by a quadratic function?
vampirchik [111]
I think the answer is c purplestar1
8 0
3 years ago
What is the explicit formula for this sequence?
ddd [48]

Answer:

a_n=-7+4(n-1)

or

a_n=-7+(n-1)(4)

Step-by-step explanation:

-7,-3,1,5,... is a arithmetic sequence.

Arithmetic sequences have a common difference. That is, it is going up by 4 each time.

When you see arithmetic sequence, you should think linear equation.

The point-slope form of a line is y-y_1=m(x-x_1).

m is the common difference, the slope.

Any they are using the point at x=1 in the point slope form.  So they are using (1,-7).

So let's put this into our point-slope form:

y-(-7)=4(x-1)

y+7=4(x-1)

Subtract 7 on both sides:

y=-7+4(x-1)

So your answer is

a_n=-7+4(n-1)

6 0
3 years ago
A store offers 20% off all items. If x is the original purchase price, which expression represents the final price with the disc
denis23 [38]

Answer:

B & D

Step-by-step explanation:

We use percents in decimal form to multiply it with the price. We convert percents into decimals by dividing the percent number by 100. For example, 78% divided by 100 becomes 0.78.

There are two ways to look at it:

  • For finding the price we pay during a sale, we focus on the percent we pay. If 22% off is the sale, then we spend 78% or 100-22=78. If 20% off is the sale, then we pay 80% or 0.80. Multiply that by x an unknown price and we have 0.8x.
  • We can find the percent off by multiplying the price by the percent conversion. So 20% is 0.20. Then subtract it from the original price to find the leftover that we pay. This is x-0.2x.


6 0
3 years ago
Read 2 more answers
Could someone pleasee answer this?
Snezhnost [94]

Answer:

Step-by-step explanation:

7 0
3 years ago
3 inches
Romashka [77]

Answer:

8

3

Step-by-step explanation:

Volume of a cylinder = πr²h

Volume = 3207

Radius, r

Height, = 5

320π = π * 5 * r²

320 = * 5 * r²

320 = 5 * r²

r² = 320/ 5

r² = 64

r = 8 m

The lateral surface area of a cube is

LSA = 4s²

Where s = edge length

36 = 4s²

s² = 36/4

s² = 9

s =. sqrt(9)

s = 3

7 0
3 years ago
Other questions:
  • Determine the intercepts of the line.
    15·1 answer
  • In ABC, O is the centroid of the triangle and AO is 12.7 m. Find the length of OY and AY.​
    5·1 answer
  • I need help please and thanks a lot ​
    14·1 answer
  • How do you simplify 33xy/3x?​
    8·2 answers
  • Asha runs 5 meters every 2 seconds. How far does asha run after 3 seconds? After 5 seconds?
    6·2 answers
  • Mrs. Thompson wants to buy centerpieces to use at a party. It will cost $49 to have the centerpieces delivered plus $0.89 per ce
    5·1 answer
  • I’m stuck please help .
    13·1 answer
  • (Brainliest for fastest right answer!!!) Which is correct?
    15·1 answer
  • Denis let go of a penny at the top of a well and the penny fell straight down to the bottom of the well the top of the well was
    9·1 answer
  • A jewelry maker has 51 inches of chain. She wants to cut the chain into 9 equal parts. How long will each part be?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!