1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maw [93]
3 years ago
6

A+b=180 A=-2x+115 B=-6x+169 What is the value of B?

Mathematics
1 answer:
natulia [17]3 years ago
6 0
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
You might be interested in
What are the center and radius of the circle given by the equation ?
valina [46]

General formula of the circle

(x-a)² + (y - b)² = r²,


where (a,b) - coordinates of the center, r - radius of the circle.


(x-3)²+(y+4)²=4

(x-3)²+(y+4)²=2²


So, the center is (3, -4) and radius r = 2.


A. (3, –4); 2


3 0
3 years ago
The two lines below intersect as shown what the value of x (2x+29) (9x-13)
tensa zangetsu [6.8K]

Given:

Two lines intersect each other.

Consider the below figure attached with this question.

To find:

The value of x.

Solution:

If two lines intersect each other then the vertically opposite angles are congruent and their measures are equal.

In the given figure, the measures of two vertically opposite angles are (2x+29)° and (9x-13)°.

2x+29=9x-13

2x-9x=-29-13

-7x=-42

Divide both sides by -7.

x=\dfrac{-42}{-7}

x=6

Therefore, the value of x is 6.

8 0
3 years ago
Help <br><br> Don’t use for points and also be clear or I will take the points back
katen-ka-za [31]

Answer:

x=47°

Step-by-step explanation:

..,........................

7 0
3 years ago
Read 2 more answers
Which of these is a unit rate. $3 for 3 hot dogs, $5 for a case of soda, $16 for 2 movie tickets, $8 for 6 cupcakes
blondinia [14]
$5 for a case of soda
5 0
3 years ago
Read 2 more answers
If f(x) = x2 - 1 and g(x) = 2x - 3, what is the domain of (fog)(x)?
ladessa [460]

Answer:

domain will be ( -∞, ∞)

Step-by-step explanation:

The given functions are f(x) = x² - 1 and g(x) = 2x - 3

We have to find domain of (fog)(x)

We will find the function (fg)(x) first.

(fog)(x) = f[g(x)]

         = (2x - 3)²

         = 4x² + 9 - 12x - 1

        = 4x² - 12x + 8

       = 4 (x² - 3x + 2)

The given function is defined for all values of x.

Therefore, domain will be ( -∞, ∞)

<u>brainly.com/question/2458431</u>

4 0
2 years ago
Other questions:
  • Each cube represents 1 cubic inch. What is the volume of the prism?
    14·1 answer
  • Ok so if you have an equation with a variable on both sides like this : 5x-6=2x
    14·1 answer
  • What is the value of x in the diagram below?
    12·1 answer
  • Write a compound inequality to represent the following verbal expression:
    13·1 answer
  • In △CDE , CD=14 , DE=9 , and m∠E=71∘ .
    5·2 answers
  • a boy who is reading 20 pages of a book per day can finish it in one month. how many day will he take it if he reads 30 pages pe
    11·1 answer
  • X log(2^(x+2))=8 please help
    13·1 answer
  • We can use algebraic operations to rewrite expressions, including polynomial expressions. When we rewrite polynomial expressions
    6·1 answer
  • In general,
    14·1 answer
  • -x + 3y = -23<br> -8x - 3y = -22<br> using elimination
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!