At at least one die come up a 3?We can do this two ways:) The straightforward way is as follows. To get at least one 3, would be consistent with the following three mutually exclusive outcomes:the 1st die is a 3 and the 2nd is not: prob = (1/6)x(5/6)=5/36the 1st die is not a 3 and the 2nd is: prob = (5/6)x((1/6)=5/36both the 1st and 2nd come up 3: prob = (1/6)x(1/6)=1/36sum of the above three cases is prob for at least one 3, p = 11/36ii) A faster way is as follows: prob at least one 3 = 1 - (prob no 3's)The probability to get no 3's is (5/6)x(5/6) = 25/36.So the probability to get at least one 3 is, p = 1 - (25/36) = 11/362) What is the probability that a card drawn at random from an ordinary 52 deck of playing cards is a queen or a heart?There are 4 queens and 13 hearts, so the probability to draw a queen is4/52 and the probability to draw a heart is 13/52. But the probability to draw a queen or a heart is NOT the sum 4/52 + 13/52. This is because drawing a queen and drawing a heart are not mutually exclusive outcomes - the queen of hearts can meet both criteria! The number of cards which meet the criteria of being either a queen or a heart is only 16 - the 4 queens and the 12 remaining hearts which are not a queen. So the probability to draw a queen or a heart is 16/52 = 4/13.3) Five coins are tossed. What is the probability that the number of heads exceeds the number of tails?We can divide
Answer:
1,041.9feet
Step-by-step explanation:
Given the height of the rocket expressed as
y = -16x² + 245x + 104
At maximum height, dy/dx = 0
dy/dx = -32x+245
0 = -32x+245
32x = 245
x = 245/32
x = 7.65625
Get the maximum height
Recall that;
y = -16x² + 245x + 104
Substitute the value of x;
y = -16(7.65625)² + 245(7.65625) + 104
y = -937.890625 + 1,875.78125 + 104
y = 1,041.890625feet
Hcne the maximum height to the nearest foot is 1,041.9feet
Step-by-step explanation:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
2
+
6
+
4
=
0
2x^{2}+6x+4=0
2x2+6x+4=0
=
2
a={\color{#c92786}{2}}
a=2
=
6
b={\color{#e8710a}{6}}
b=6
=
4
c={\color{#129eaf}{4}}
c=4
=
−
6
±
6
2
−
4
⋅
2
⋅
4
√
2
⋅
2
x=\frac{-{\color{#e8710a}{6}} \pm \sqrt{{\color{#e8710a}{6}}^{2}-4 \cdot {\color{#c92786}{2}} \cdot {\color{#129eaf}{4}}}}{2 \cdot {\color{#c92786}{2}}}
x=2⋅2−6±62−4⋅2⋅4
brainliest and follow and thanks
Answer:
a) X=0
b) X=2,-2
Step-by-step explanation: