I'm not sure about this one. Are you talking about like this year?
Bob has to own his land for 18 years if the price is increasing at the rate of 6% per year.
Given that land was bought by Bob for $16390, the price is increasing at the rate of 6%, price of land today is $46817.
We are required to find the time for which Bob need to own the land so that the price of the land is $46817 today.
Compounding means calculating amount on the principal and the amount added interest.
Rate of increasing the price of land be 6%.
Price when Bob bought the land=$16390.
Price of land today=$46817.
It is like compounding of interest and the sum is calculated as under:
S=P*
In the above equation P is theamount at beginning,r is rate of increasing and n is the number of years.
46817=16390
46817/16390=
=2.8564
=
(Approximately)
From both the sides we will get n=18.
Hence Bob has to own his land for 18 years if the price is increasing at the rate of 6% per year.
Learn more about compounding at brainly.com/question/2449900
#SPJ4
Answer: Option (c) is correct.
Explanation:
Given that,
Quantity demanded increases by = 30%
Price elasticity of demand = 2
Therefore,
Price elasticity of demand = 
2 = 
Percentage change in prices = 
= 15%
Therefore, price of a particular good decreases by 15%.
The correct options about the international obtaining of funds are:
- Money markets
- Capital markets
<h3 /><h3>
Money Market</h3>
The money market is a good form to obtain money to capitalize a company, it functions when an enterprise negotiate debt instruments to short term, giving to the buyer low risk and high profitability, in this form, the company obtain for a shor term a large mount of money and can invest in technology, resources or others to improve and grow.
If you want to learn more about Financial Market, you can visit the following link: brainly.com/question/15960668?referrer=searchResults
Answer:
The project is worth $2,738.57.
Explanation:
Giving the following information:
You have been offered a project paying $300 at the beginning of each year for the next 20 years. The rate of return is 9%.
To calculate the present value, first, we need to calculate the final value:
FV= {A*[(1+i)^n-1]}/i
A= annual pay= 300
n= 20
i= 0.09
FV= {300*[(1.09^20)-1]}/0.09
FV= $15,348.06
Now, we can calculate the present value:
PV= FV/(1+i)^n
PV= 15,348.06/1.09^20= $2,738.57