The 90% confidence interval for the population mean of the considered population from the given sample data is given by: Option C: [130.10, 143.90]
<h3>
How to find the confidence interval for population mean from large samples (sample size > 30)?</h3>
Suppose that we have:
- Sample size n > 30
- Sample mean =

- Sample standard deviation = s
- Population standard deviation =

- Level of significance =

Then the confidence interval is obtained as
- Case 1: Population standard deviation is known

- Case 2: Population standard deviation is unknown.

For this case, we're given that:
- Sample size n = 90 > 30
- Sample mean =
= 138 - Sample standard deviation = s = 34
- Level of significance =
= 100% - confidence = 100% - 90% = 10% = 0.1 (converted percent to decimal).
At this level of significance, the critical value of Z is:
= ±1.645
Thus, we get:
![CI = \overline{x} \pm Z_{\alpha /2}\dfrac{s}{\sqrt{n}}\\CI = 138 \pm 1.645\times \dfrac{34}{\sqrt{90}}\\\\CI \approx 138 \pm 5.896\\CI \approx [138 - 5.896, 138 + 5.896]\\CI \approx [132.104, 143.896] \approx [130.10, 143.90]](https://tex.z-dn.net/?f=CI%20%3D%20%5Coverline%7Bx%7D%20%5Cpm%20Z_%7B%5Calpha%20%2F2%7D%5Cdfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D%5C%5CCI%20%3D%20138%20%5Cpm%201.645%5Ctimes%20%5Cdfrac%7B34%7D%7B%5Csqrt%7B90%7D%7D%5C%5C%5C%5CCI%20%5Capprox%20138%20%5Cpm%205.896%5C%5CCI%20%5Capprox%20%5B138%20-%205.896%2C%20138%20%2B%205.896%5D%5C%5CCI%20%5Capprox%20%5B132.104%2C%20143.896%5D%20%5Capprox%20%5B130.10%2C%20143.90%5D)
Thus, the 90% confidence interval for the population mean of the considered population from the given sample data is given by: Option C: [130.10, 143.90]
Learn more about confidence interval for population mean from large samples here:
brainly.com/question/13770164
In the inverse we replace the place of x by y .
![g(x) = \sqrt[3]{x} - 3 \\ \\ x = \sqrt[3]{y} - 3 \\ \sqrt[3]{y} = x + 3 \\ y = {(x + 3)}^{3} \\ y = {(x + 3)}^{2} (x + 3) \\ y = ({x}^{2} + 6x + 9)(x + 3) \\ \\ y = {x}^{3} + 6 {x}^{2} + 9x + 3 {x}^{2} + 18x + 27 \\ \\ y = {x}^{3} + 9 {x}^{2} + 27x + 27 \\ \\ \\ g(x)^{ - 1} = {x}^{3} + 9 {x}^{2} + 27x + 27](https://tex.z-dn.net/?f=g%28x%29%20%3D%20%20%5Csqrt%5B3%5D%7Bx%7D%20%20-%203%20%5C%5C%20%20%5C%5C%20x%20%3D%20%20%5Csqrt%5B3%5D%7By%7D%20%20-%203%20%5C%5C%20%20%5Csqrt%5B3%5D%7By%7D%20%20%3D%20x%20%2B%203%20%5C%5C%20y%20%3D%20%20%7B%28x%20%2B%203%29%7D%5E%7B3%7D%20%20%5C%5C%20y%20%3D%20%20%7B%28x%20%2B%203%29%7D%5E%7B2%7D%20%28x%20%2B%203%29%20%5C%5C%20y%20%3D%20%20%28%7Bx%7D%5E%7B2%7D%20%20%2B%206x%20%2B%209%29%28x%20%2B%203%29%20%5C%5C%20%5C%5C%20%20y%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%206%20%7Bx%7D%5E%7B2%7D%20%20%2B%209x%20%2B%203%20%7Bx%7D%5E%7B2%7D%20%20%2B%2018x%20%2B%2027%20%5C%5C%20%20%5C%5C%20y%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%209%20%7Bx%7D%5E%7B2%7D%20%20%2B%2027x%20%2B%2027%20%5C%5C%20%20%20%5C%5C%20%5C%5C%20g%28x%29%5E%7B%20-%201%7D%20%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%209%20%7Bx%7D%5E%7B2%7D%20%20%2B%2027x%20%2B%2027%20)
I hope I helped you^_^
Answer:
6.7%
Step-by-step explanation:
In this question, we are to calculate the percentage error in in the average polling results calculated.
Firstly, what this means is that we calculate the average of the total votes.
That would be ; (66 + 56 + 55 + 60 + 63)/5 =
300/5 = 60%
we now proceed to calculate the percentage error in the company’s result.
Mathematically;
percentage error = (Actual value - expected value)/expected value * 100%
Here the actual value is 64% and the expected is 60%
% error = (64-60)/60 * 100 = 4/60 * 100 = 6.67%
This is 6.7% to the nearest tenth of a percent
The answer your looking for is A hope it helps ;)
THE ANSWER IS ALREADY IN THE COMMENTS