<span><u>1/3x - 1/2y = 1</u>
At the 'x' intercept, y=0 , and the equation is 1/3 x = 1
Multiply each side by 3 : <em>x = 3 </em> <== the x-intercept
At the 'y' intercept, x=0, and the equation is -1/2 y = 1
Multiply each side by 2 : - y = 2
Multiply each side by -1 : <em> y = -2 </em> <== the y-intercept
</span>
Answer:
508.68 or 508.7
Step-by-step explanation:
V=1/3(3.14)(9)^2(6)
(3.14)(81) x 6
(3.14)(486)
1/3(1526)
(divide by 3)= 508.68
Answer:
B
Step-by-step explanation:
2x3=6 and 6x4=24 so 6-24= -18
Answer:
$4,780
Step-by-step explanation:
20% x 23,900= 4,780
Answer:
A solution is said to be extraneous, if it is a zero of the equation, but it does not satisfy the equation,when substituted in the original equation,L.H.S≠R.H.S.
The given equation consisting of variable , m is
![\frac{2 m}{2 m+3} -\frac{2 m}{2 m-3}=1\\\\ 2 m[\frac{1}{2 m+3} -\frac{1}{2 m-3}]=1\\\\ 2 m\times \frac{[2 m-3 -2 m- 3]}{4m^2-9}=1\\\\ -6 \times 2 m=4 m^2 -9\\\\ 4 m^2 +1 2 m -9=0\\\\m=\frac{-12 \pm\sqrt{12^2-4 \times 4 \times (-9)}}{2\times 4}\\\\m=\frac{-12 \pm \sqrt {144+144}}{8}\\\\m=\frac{-12 \pm \sqrt {288}}{8}\\\\m=\frac{-12 \pm 12 \sqrt{2}}{8}\\\\m=\frac{3}{2}\times(-1 \pm \sqrt{2})](https://tex.z-dn.net/?f=%5Cfrac%7B2%20m%7D%7B2%20m%2B3%7D%20-%5Cfrac%7B2%20m%7D%7B2%20m-3%7D%3D1%5C%5C%5C%5C%202%20m%5B%5Cfrac%7B1%7D%7B2%20m%2B3%7D%20-%5Cfrac%7B1%7D%7B2%20m-3%7D%5D%3D1%5C%5C%5C%5C%202%20m%5Ctimes%20%5Cfrac%7B%5B2%20m-3%20-2%20m-%203%5D%7D%7B4m%5E2-9%7D%3D1%5C%5C%5C%5C%20-6%20%5Ctimes%202%20m%3D4%20m%5E2%20-9%5C%5C%5C%5C%204%20m%5E2%20%2B1%202%20m%20-9%3D0%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%5Csqrt%7B12%5E2-4%20%5Ctimes%204%20%5Ctimes%20%28-9%29%7D%7D%7B2%5Ctimes%204%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%20%5Csqrt%20%7B144%2B144%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%20%5Csqrt%20%7B288%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%2012%20%5Csqrt%7B2%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B3%7D%7B2%7D%5Ctimes%28-1%20%5Cpm%20%5Csqrt%7B2%7D%29)
None of the two solution
, is extraneous.
Here, L.H.S= R.H.S
Option A: 0→ extraneous