Try photo math it is very helpful
• Factors of 46 =1, 2, 23, 46.
• Distinct Factors of 46 = 1, 2, 23, 46.
The best answer from the options that proves that the residual plot shows that the line of best fit is appropriate for the data is: ( Statement 1 ) Yes, because the points have no clear pattern
X Given Predicted Residual value
1 3.5 4.06 -0.56
2 2.3 2.09 0.21
3 1.1 0.12 0.98
4 2.2 -1.85 4.05
5 -4.1 -3.82 -0.28
The residual value is calculated as follows using this formula: ( Given - predicted )
1) ( 3.5 - 4.06 ) = -0.56
2) ( 2.3 - 2.09 ) = 0.21
3) ( 1.1 - 0.12 ) = 0.98
4) (2.2 - (-1.85) = 4.05
5) ( -4.1 - (-3.82) = -0.28
Residual values are the difference between the given values and the predicted values in a given data set and the residual plot is used to represent these values .
attached below is the residual plot of the data set
hence we can conclude from the residual plot attached below that the line of best fit is appropriate for the data because the points have no clear pattern ( i.e. scattered )
learn more about residual plots : brainly.com/question/16821224
9514 1404 393
Answer:
140, 35, 260/35, 7.43, 8
Step-by-step explanation:
The last section is just a summary of the preceding sections, a short description of the problem and how you worked it.
She sells the jackets for 140% of $25, or $35. 260/35 = 7.43 She can only sell a whole number of jackets, so she needs to sell 8.
Answer:
y= -2x -8
Step-by-step explanation:
I will be writing the equation of the perpendicular bisector in the slope-intercept form which is y=mx +c, where m is the gradient and c is the y-intercept.
A perpendicular bisector is a line that cuts through the other line perpendicularly (at 90°) and into 2 equal parts (and thus passes through the midpoint of the line).
Let's find the gradient of the given line.

Gradient of given line




The product of the gradients of 2 perpendicular lines is -1.
(½)(gradient of perpendicular bisector)= -1
Gradient of perpendicular bisector
= -1 ÷(½)
= -1(2)
= -2
Substitute m= -2 into the equation:
y= -2x +c
To find the value of c, we need to substitute a pair of coordinates that the line passes through into the equation. Since the perpendicular bisector passes through the midpoint of the given line, let's find the coordinates of the midpoint.

Midpoint of given line



Substituting (-3, -2) into the equation:
-2= -2(-3) +c
-2= 6 +c
c= -2 -6 <em>(</em><em>-</em><em>6</em><em> </em><em>on both</em><em> </em><em>sides</em><em>)</em>
c= -8
Thus, the equation of the perpendicular bisector is y= -2x -8.