This is an arithmetic sequence because each term is 7 greater than the previous term, so 7 is what is called the common difference...
Any arithmetic sequence can be expressed as:
a(n)=a+d(n-1), a=first term, d=common difference, n=term number.
We know a=1 and d=7 so:
a(n)=1+7(n-1)
a(n)=1+7n-7
a(n)=7n-6
The above is the "rule" for the nth term.
The absolute value function |<em>x</em>| always returns a non-negative number. It takes any number <em>x</em> and returns <em>x</em> if it's already non-negative, or -<em>x</em> if it is negative in order to make it positive.

For the equation
-3 + 4 |2<em>x</em> - 5| = 14
rearrange terms to get
|2<em>x</em> - 5| = 17/4
Now,
• if 2<em>x</em> - 5 ≥ 0, then |2<em>x</em> - 5| = 2<em>x</em> - 5. Then
2<em>x</em> - 5 = 17/4
• and if instead 2<em>x</em> - 5 < 0, then |2<em>x</em> - 5| = -(2<em>x</em> - 5), so that
-(2<em>x</em> - 5) = 17/4, or
2<em>x</em> - 5 = -17/4
In the first case,
2<em>x</em> - 5 = 17/4
2<em>x</em> = 17/4 + 5 = 37/4
<em>x</em> = 37/8
In the second case,
2<em>x</em> - 5 = -17/4
2<em>x</em> = -17/4 + 5 = 3/4
<em>x</em> = 3/8
Solve for x over the real numbers:18 ° (x - 1) (x - 10 ° x) = 0
Divide both sides by 18 °:(x - 1) (x - 10 ° x) = 0
Split into two equations:x - 1 = 0 or x - 10 ° x = 0
Add 1 to both sides:x = 1 or x - 10 ° x = 0
Collect in terms of x:x = 1 or (1 - 10 °) x = 0
Divide both sides by 1 - 10 °:Answer: x = 1 or x = 0