Answer:
1) w₁=4 - i w₂= -4 + i
2) w₁= 3 - i w₂= -3 + i
3) w₁= 1 + 2i w₂= - 1 - 2i
4) w₁= 2- 3i w₂= -2 + 3i
5) w₁= 5 - 2i w₂= -5 + 2i
6) w₁= 5 - 3i w₂= -5 + 3i
Step-by-step explanation:
The root of a complex number is given by:
![\sqrt[n]{z}=\sqrt[n]{r}(Cos(\frac{\theta+2k\pi}{n}) + i Sin(\frac{\theta+2k\pi}{n}))](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bz%7D%3D%5Csqrt%5Bn%5D%7Br%7D%28Cos%28%5Cfrac%7B%5Ctheta%2B2k%5Cpi%7D%7Bn%7D%29%20%2B%20i%20Sin%28%5Cfrac%7B%5Ctheta%2B2k%5Cpi%7D%7Bn%7D%29%29)
where:
r: is the module of the complex number
θ: is the angle of the complex number to the positive axis x
n: index of the root
1) z = 15 − 8i ⇒ r=17 θ= -0.4899 rad
w₁=
=4-i
w₂=
=-1+i
2) z = 8 − 6i ⇒ r=10 θ= -0.6435 rad
w₁=
= 3 - i
w₂=
= -3 + i
3) z = −3 + 4i ⇒ r=5 θ= -0.9316 rad
w₁=
= 1 + 2i
w₂=
= -1 - 2i
4) z = −5 − 12i ⇒ r=13 θ= 0.4426 rad
w₁=
= 2- 3i
w₂=
= -2 + 3i
5) z = 21 − 20i ⇒ r=29 θ= -0.8098 rad
w₁=
= 5 - 2i
w₂=
= -5 + 2i
6) z = 16 − 30i ⇒ r=34 θ= -1.0808 rad
w₁=
= 5 - 3i
w₂=
= -5 + 3i
<span>3x^2 + 4x + 8 + 2x^2 - 6x + 3 to give result as 9x^2 -2x - 5
</span>3x^2 + 4x + 8 + 2x^2 - 6x + 3
= 5x^2 - 2x + 11
so
9x^2 -2x - 5 - (5x^2 - 2x + 11)
= 9x^2 -2x - 5 - 5x^2 + 2x - 11
= 4x^2 -16
answer
expression (4x^2 -16) must be added to the sum of (3x^2 + 4x + 8) and (2x^2 - 6x + 3) to give the result as (9x^2 - 2x - 5)
Answer: 207/4 or -51.75
Step-by-step explanation:
Answer:
450 = 50x
Step-by-step explanation:
50x = 450
x = 450 / 50
x = 9
First off we want to combine "like-terms"
1. Subtract 6x , so it will look like this: 2x-6x+12=-12
2. Subtract the -12 from the first side so it looks like 2x-6x=-12-12
3. Combine like terms. So: -3x=-24 . The negatives will cancel out when dividing 24/3.
The final answer is 8 after dividing. Hope this helped!