You replace x by 18 so it becomes f(18)=1.50×18+12.50 and that should give you 39.50
Answer:
f(g(-2)) = 3
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Functions
- Function Notation
- Composite Functions
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = 4 - x²
g(x) = 2x + 5
<u>Step 2: Find g(-2)</u>
- Substitute in <em>x</em> [Function g(x)]: g(-2) = 2(-2) + 5
- Multiply: g(-2) = -4 + 5
- Add: g(-2) = 1
<u>Step 3: Find f(g(-2))</u>
- Substitute in <em>x</em> [Function f(x)]: f(g(-2)) = 4 - (1)²
- Evaluate exponents: f(g(-2)) = 4 - 1
- Subtract: f(g(-2)) = 3
Answer:
65
Step-by-step explanation:
https://www.gktoday.in/aptitude/the-next-number-of-the-sequence-3-5-9-17-33-is/
let's firstly convert the mixed fractions to improper fractions and then get their difference.
![\stackrel{mixed}{8\frac{7}{8}}\implies \cfrac{8\cdot 8+7}{8}\implies \stackrel{improper}{\cfrac{71}{8}} ~\hfill \stackrel{mixed}{6\frac{3}{4}}\implies \cfrac{6\cdot 4+3}{4}\implies \stackrel{improper}{\cfrac{27}{4}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{71}{8}-\cfrac{27}{4}\implies \cfrac{1(71)~~ -~~2(27)}{\underset{\textit{using this LCD}}{8}}\implies \cfrac{71-54}{8}\implies \cfrac{17}{8}\implies 2\frac{1}{8}](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B8%5Cfrac%7B7%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B8%5Ccdot%208%2B7%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B71%7D%7B8%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B6%5Cfrac%7B3%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B6%5Ccdot%204%2B3%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B27%7D%7B4%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B71%7D%7B8%7D-%5Ccfrac%7B27%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B1%2871%29~~%20-~~2%2827%29%7D%7B%5Cunderset%7B%5Ctextit%7Busing%20this%20LCD%7D%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B71-54%7D%7B8%7D%5Cimplies%20%5Ccfrac%7B17%7D%7B8%7D%5Cimplies%202%5Cfrac%7B1%7D%7B8%7D)