Easy
set to zero
those are the roots or xintersepts
(x+1)(x+4)(x-7)=0
x+1=0
x=-1
x+4=0
x=-4
x-7=0
x=7
xints are (-4,0) (-1,0) (7,0)
There ain’t even T on the graph show the whole graph and maybe we can help you answer the question Karen
Check the picture below.
so let's find the lengths of those two sides in red, since are the length and width of the rectangle.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-3}~,~\stackrel{y_2}{6})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d = \sqrt{[-3-(-6)]^2+[6-3]^2}\implies d=\sqrt{(-3+6)^2+(6-3)^2} \\\\\\ d=\sqrt{9+9}\implies \boxed{d=\sqrt{18}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-3%7D~%2C~%5Cstackrel%7By_2%7D%7B6%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B%5B-3-%28-6%29%5D%5E2%2B%5B6-3%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-3%2B6%29%5E2%2B%286-3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B9%2B9%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B18%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-1})~\hfill d=\sqrt{[-2-(-6)]^2+[-1-3]^2} \\\\\\ d=\sqrt{(-2+6)^2+(-1-3)^2}\implies d=\sqrt{16+16}\implies \boxed{d=\sqrt{32}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the rectangle}}{(\sqrt{18})(\sqrt{32})}\implies \sqrt{18\cdot 32}\implies \sqrt{576}\implies 24](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29~%5Chfill%20d%3D%5Csqrt%7B%5B-2-%28-6%29%5D%5E2%2B%5B-1-3%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B%28-2%2B6%29%5E2%2B%28-1-3%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B16%2B16%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B32%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20rectangle%7D%7D%7B%28%5Csqrt%7B18%7D%29%28%5Csqrt%7B32%7D%29%7D%5Cimplies%20%5Csqrt%7B18%5Ccdot%2032%7D%5Cimplies%20%5Csqrt%7B576%7D%5Cimplies%2024)
7. honestly not 100% sure. i did 364 divided by 13 which was 28 so 28 flowers per table. and then 28 divided by 4. 7 flowers per vase.