Answer:
number 1 is $15 if i figure the rest out i will comment
Answer:
480/(x+60) ≤ 7
Step-by-step explanation:
We can use the relations ...
time = distance/speed
distance = speed×time
speed = distance/time
to write the required inequality any of several ways.
Since the problem is posed in terms of time (7 hours) and an increase in speed (x), we can write the time inequality as ...
480/(60+x) ≤ 7
Multiplying this by the denominator gives us a distance inequality:
7(60+x) ≥ 480 . . . . . . at his desired speed, Neil will go no less than 480 miles in 7 hours
Or, we can write an inequality for the increase in speed directly:
480/7 -60 ≤ x . . . . . . x is at least the difference between the speed of 480 miles in 7 hours and the speed of 60 miles per hour
___
Any of the above inequalities will give the desired value of x.
Answer:
0.5<2-√2<0.6
Step-by-step explanation:
The original inequality states that 1.4<√2<1.5
For the second inequality, you can think of 2-√2 as 2+(-√2).
Because of the "properties of inequalities", we know that when a positive inequality is being turned into a negative, the numbers need to swap and become negative. So, the original inequality becomes -1.5<-√2<-1.4. (Notice how the √2 becomes negative, too). This makes sense because -1.5 is less than -1.4.
Using our new inequality, we can solve the problem. Instead of 2+(-√2), we are going to switch "-√2" with both possibilities of -1.5 and -1.6. For -1.5, we would get 2+(-1.5), or 0.5. For -1.4, we would get 2+(-1.4), or 0.6.
Now, we insert the new numbers into the equation _<2-√2<_. The 0.5 would take the original equation's "1.4" place, and 0.6 would take 1.5's. In the end, you'd get 0.5<2-√2<0.6. All possible values of 2-√2 would be between 0.5 and 0.6.
Hope this helped!