Answer:
This system has one answer.
Step-by-step explanation:
This system only has one answer which are: x=1 y=2
Hope this helped! :)
Answer:
Real
Step-by-step explanation:
i^6-122-7i^2
(i^2)^3-122-7i^2
(-1)^3-122-7×(-1)
-1-122+7
-123+7
-116
So the final answer is -116
A) There are a number of ways to compute the determinant of a 3x3 matrix. Since k is on the bottom row, it is convenient to compute the cofactors of the numbers on the bottom row. Then the determinant is ...
1×(2×-1 -3×1) -k×(3×-1 -2×1) +2×(3×3 -2×2) = 5 -5k
bi) Π₁ can be written using r = (x, y, z).
Π₁ ⇒ 3x +2y +z = 4
bii) The cross product of the coefficients of λ and μ will give the normal to the plane. The dot-product of that with the constant vector will give the desired constant.
Π₂ ⇒ ((1, 0, 2)×(1, -1, -1))•(x, y, z) = ((1, 0, 2)×(1, -1, -1))•(1, 2, 3)
Π₂ ⇒ 2x +3y -z = 5
c) If the three planes form a sheath, the ranks of their coefficient matrix and that of the augmented matrix must be 2. That is, the determinant must be zero. The value of k that makes the determinant zero is found in part (a) to be -1.
A common approach to determining the rank of a matrix is to reduce it to row echelon form. Then the number of independent rows becomes obvious. (It is the number of non-zero rows.) This form for k=-1 is shown in the picture.
Answer:
Therefore, the probability that at least half of them need to wait more than 10 minutes is <em>0.0031</em>.
Step-by-step explanation:
The formula for the probability of an exponential distribution is:
P(x < b) = 1 - e^(b/3)
Using the complement rule, we can determine the probability of a customer having to wait more than 10 minutes, by:
p = P(x > 10)
= 1 - P(x < 10)
= 1 - (1 - e^(-10/10) )
= e⁻¹
= 0.3679
The z-score is the difference in sample size and the population mean, divided by the standard deviation:
z = (p' - p) / √[p(1 - p) / n]
= (0.5 - 0.3679) / √[0.3679(1 - 0.3679) / 100)]
= 2.7393
Therefore, using the probability table, you find that the corresponding probability is:
P(p' ≥ 0.5) = P(z > 2.7393)
<em>P(p' ≥ 0.5) = 0.0031</em>
<em></em>
Therefore, the probability that at least half of them need to wait more than 10 minutes is <em>0.0031</em>.